These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 31177460

  • 41. The Closed State of the Thin Filament Is Not Occupied in Fully Activated Skeletal Muscle.
    Bershitsky SY, Koubassova NA, Ferenczi MA, Kopylova GV, Narayanan T, Tsaturyan AK.
    Biophys J; 2017 Apr 11; 112(7):1455-1461. PubMed ID: 28402887
    [Abstract] [Full Text] [Related]

  • 42. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point Mutations in the Tropomyosin Genes.
    Matyushenko AM, Levitsky DI.
    Biochemistry (Mosc); 2020 Jan 11; 85(Suppl 1):S20-S33. PubMed ID: 32087052
    [Abstract] [Full Text] [Related]

  • 43. Tropomyosin movement is described by a quantitative high-resolution model of X-ray diffraction of contracting muscle.
    Koubassova NA, Bershitsky SY, Ferenczi MA, Narayanan T, Tsaturyan AK.
    Eur Biophys J; 2017 May 11; 46(4):335-342. PubMed ID: 27640143
    [Abstract] [Full Text] [Related]

  • 44. Effects of an Interchain Disulfide Bond on Tropomyosin Structure: A Molecular Dynamics Study.
    Koubassova NA, Bershitsky SY, Tsaturyan AK.
    Int J Mol Sci; 2018 Oct 28; 19(11):. PubMed ID: 30373319
    [Abstract] [Full Text] [Related]

  • 45. Inhibition of smooth muscle actomyosin ATPase by caldesmon is associated with caldesmon-induced conformational changes in tropomyosin bound to actin.
    Horiuchi KY, Wang Z, Chacko S.
    Biochemistry; 1995 Dec 26; 34(51):16815-20. PubMed ID: 8527457
    [Abstract] [Full Text] [Related]

  • 46. C-terminal actin-binding sites of smooth muscle caldesmon switch actin between conformational states.
    Borovikov YS, Avrova SV, Vikhoreva NN, Vikhorev PG, Ermakov VS, Copeland O, Marston SB.
    Int J Biochem Cell Biol; 2001 Dec 26; 33(12):1151-9. PubMed ID: 11606251
    [Abstract] [Full Text] [Related]

  • 47. Mechanism of regulation of cardiac actin-myosin subfragment 1 by troponin-tropomyosin.
    Tobacman LS, Adelstein RS.
    Biochemistry; 1986 Feb 25; 25(4):798-802. PubMed ID: 2938620
    [Abstract] [Full Text] [Related]

  • 48. Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin.
    Shchepkin DV, Nabiev SR, Kopylova GV, Matyushenko AM, Levitsky DI, Bershitsky SY, Tsaturyan AK.
    J Muscle Res Cell Motil; 2017 Apr 25; 38(2):183-191. PubMed ID: 28540577
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Regulation of actin-myosin interaction.
    Dancker P.
    Basic Res Cardiol; 1977 Apr 25; 72(2-3):118-23. PubMed ID: 140653
    [Abstract] [Full Text] [Related]

  • 51. The primary cause of muscle disfunction associated with substitutions E240K and R244G in tropomyosin is aberrant behavior of tropomyosin and response of actin and myosin during ATPase cycle.
    Simonyan AO, Sirenko VV, Karpicheva OE, Robaszkiewicz K, Śliwinska M, Moraczewska J, Krutetskaya ZI, Borovikov YS.
    Arch Biochem Biophys; 2018 Apr 15; 644():17-28. PubMed ID: 29510086
    [Abstract] [Full Text] [Related]

  • 52. Periodic binding of troponin C.I and troponin I to tropomyosin-actin filaments.
    Ohtsuki I, Shiraishi F.
    J Biochem; 2002 May 15; 131(5):739-43. PubMed ID: 11983082
    [Abstract] [Full Text] [Related]

  • 53. N-Terminal Fragment of Cardiac Myosin Binding Protein C Modulates Cooperative Mechanisms of Thin Filament Activation in Atria and Ventricles.
    Kochurova AM, Beldiia EA, Nefedova VV, Ryabkova NS, Yampolskaya DS, Matyushenko AM, Bershitsky SY, Kopylova GV, Shchepkin DV.
    Biochemistry (Mosc); 2024 Jan 15; 89(1):116-129. PubMed ID: 38467549
    [Abstract] [Full Text] [Related]

  • 54. Tropomyosin-binding site(s) on the Dictyostelium actin surface as identified by site-directed mutagenesis.
    Saeki K, Sutoh K, Wakabayashi T.
    Biochemistry; 1996 Nov 19; 35(46):14465-72. PubMed ID: 8931542
    [Abstract] [Full Text] [Related]

  • 55. Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy.
    Narita A, Yasunaga T, Ishikawa T, Mayanagi K, Wakabayashi T.
    J Mol Biol; 2001 Apr 27; 308(2):241-61. PubMed ID: 11327765
    [Abstract] [Full Text] [Related]

  • 56. Effects of myopathy-causing mutations R91P and R245G in the TPM3 gene on structural and functional properties of slow skeletal muscle tropomyosin.
    Gonchar AD, Kopylova GV, Kochurova AM, Berg VY, Shchepkin DV, Koubasova NA, Tsaturyan AK, Kleymenov SY, Matyushenko AM, Levitsky DI.
    Biochem Biophys Res Commun; 2021 Jan 01; 534():8-13. PubMed ID: 33307294
    [Abstract] [Full Text] [Related]

  • 57. Comparison of Ca2+-dependent effects of caldesmon-tropomyosin-calmodulin and troponin-tropomyosin complexes on the structure of F-actin in ghost fibers and its interaction with myosin heads.
    Dobrowolski Z, Borovikov YS, Nowak E, Gałazkiewicz B, Dabrowska R.
    Biochim Biophys Acta; 1988 Sep 21; 956(2):140-50. PubMed ID: 3167066
    [Abstract] [Full Text] [Related]

  • 58. Myopathic mutations in the β-chain of tropomyosin differently affect the structural and functional properties of ββ- and αβ-dimers.
    Bershitsky SY, Logvinova DS, Shchepkin DV, Kopylova GV, Matyushenko AM.
    FASEB J; 2019 Feb 21; 33(2):1963-1971. PubMed ID: 30199282
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Acetylation of fission yeast tropomyosin does not promote differential association with cognate formins.
    Tang Q, Pollard LW, Homa KE, Kovar DR, Trybus KM.
    Cytoskeleton (Hoboken); 2023 Mar 21; 80(3-4):77-92. PubMed ID: 36692369
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.