These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 31184466
1. Ultra-Low-Temperature Cofired Ceramic Substrates with Low Residual Carbon for Next-Generation Microwave Applications. Joseph N, Varghese J, Teirikangas M, Vahera T, Jantunen H. ACS Appl Mater Interfaces; 2019 Jul 03; 11(26):23798-23807. PubMed ID: 31184466 [Abstract] [Full Text] [Related]
2. Multilayer Functional Tapes Cofired at 450 °C: Beyond HTCC and LTCC Technologies. Varghese J, Siponkoski T, Sobocinski M, Vahera T, Jantunen H. ACS Appl Mater Interfaces; 2018 Apr 04; 10(13):11048-11055. PubMed ID: 29513520 [Abstract] [Full Text] [Related]
3. ULTCC Glass Composites Based on Rutile and Anatase with Cofiring at 400 °C for High Frequency Applications. Varghese J, Ramachandran P, Sobocinski M, Vahera T, Jantunen H. ACS Sustain Chem Eng; 2019 Feb 18; 7(4):4274-4283. PubMed ID: 30800532 [Abstract] [Full Text] [Related]
4. Low-Permittivity and Low-Temperature Cofired BaSO4-BaF2 Microwave Dielectric Ceramics for High-Reliability Packaged Electronics. Wang W, Shehbaz M, Wang X, Du C, Xu D, Shi ZQ, Darwish MA, Qiu HS, Jin BB, Zhou T, Chen YW, Liang QX, Zhang MR, Zhou D. ACS Appl Mater Interfaces; 2023 Oct 30. PubMed ID: 37902771 [Abstract] [Full Text] [Related]
5. Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Materials (Basel); 2021 Jul 18; 14(14):. PubMed ID: 34300936 [Abstract] [Full Text] [Related]
6. Large Thermal Expansion LTCC System for Cofiring with Integrated Functional Ceramics Layers. Capraro B, Heidenreich M, Töpfer J. Materials (Basel); 2022 Jan 12; 15(2):. PubMed ID: 35057282 [Abstract] [Full Text] [Related]
7. Zn2+-Enhanced Lithium Magnesium Molybdate Ultralow Temperature Cofired Ceramics for Terahertz Wavefront Modulation Applications. Li F, Li Y, Zhao Q, Huang L, Shang Y, Li C, Luo L, Li J, Tang T, Wen Q. ACS Appl Mater Interfaces; 2023 Dec 27; 15(51):59600-59609. PubMed ID: 38091576 [Abstract] [Full Text] [Related]
8. Structure, phase evolution, and microwave dielectric properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 ceramic with ultralow sintering temperature. Zhou D, Li WB, Guo J, Pang LX, Qi ZM, Shao T, Xie HD, Yue ZX, Yao X. Inorg Chem; 2014 Jun 02; 53(11):5712-6. PubMed ID: 24848200 [Abstract] [Full Text] [Related]
9. Influence of Ce substitution for Bi in BiVO4 and the impact on the phase evolution and microwave dielectric properties. Zhou D, Pang LX, Guo J, Qi ZM, Shao T, Wang QP, Xie HD, Yao X, Randall CA. Inorg Chem; 2014 Jan 21; 53(2):1048-55. PubMed ID: 24392840 [Abstract] [Full Text] [Related]
10. New Cu₃TeO₆ ceramics: phase formation and dielectric properties. Zhu X, Wang Z, Su X, Vilarinho PM. ACS Appl Mater Interfaces; 2014 Jul 23; 6(14):11326-32. PubMed ID: 24960531 [Abstract] [Full Text] [Related]
11. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal. Di Z, Li-Xia P, Ze-Ming Q, Biao-Bing J, Xi Y. Sci Rep; 2014 Aug 07; 4():5980. PubMed ID: 25099530 [Abstract] [Full Text] [Related]
12. Design of a Sub-6 GHz Dielectric Resonator Antenna with Novel Temperature-Stabilized (Sm1-xBix)NbO4 (x = 0-0.15) Microwave Dielectric Ceramics. Wu FF, Zhou D, Du C, Jin BB, Li C, Qi ZM, Sun S, Zhou T, Li Q, Zhang XQ. ACS Appl Mater Interfaces; 2022 Feb 09; 14(5):7030-7038. PubMed ID: 35084812 [Abstract] [Full Text] [Related]
13. Design of a High-Efficiency and -Gain Antenna Using Novel Low-Loss, Temperature-Stable Li2Ti1-x(Cu1/3Nb2/3)xO3 Microwave Dielectric Ceramics. Guo HH, Fu MS, Zhou D, Du C, Wang PJ, Pang LX, Liu WF, Sombra ASB, Su JZ. ACS Appl Mater Interfaces; 2021 Jan 13; 13(1):912-923. PubMed ID: 33356114 [Abstract] [Full Text] [Related]
14. LTCC and Bulk Zn4B6O13-Zn2SiO4 Composites for Submillimeter Wave Applications. Szwagierczak D, Synkiewicz-Musialska B, Kulawik J, Pałka N. Materials (Basel); 2021 Feb 21; 14(4):. PubMed ID: 33669952 [Abstract] [Full Text] [Related]
15. Combinatorial study of ceramic tape-casting slurries. Liu Z, Wang Y, Li Y. ACS Comb Sci; 2012 Mar 12; 14(3):205-10. PubMed ID: 22283488 [Abstract] [Full Text] [Related]
16. A Series of Ultra-low Permittivity ALaP4O12 (A = Li, Na, K) Metaphosphate Microwave Dielectric Ceramics for Ultra-wideband Dielectric Resonant Antenna Application. Bao J, Zhang KH, Wang W, Liu ZY, Fang Z, Wang X, Wang CH, Li YC, He GQ, Zhou T, Zhou D. ACS Appl Mater Interfaces; 2024 Oct 30; 16(43):58898-58911. PubMed ID: 39413420 [Abstract] [Full Text] [Related]
17. Effect of sintering temperature on flexural properties of alumina fiber-reinforced, alumina-based ceramics prepared by tape casting technique. Tanimoto Y, Nemoto K. J Prosthodont; 2006 Oct 30; 15(6):345-52. PubMed ID: 17096806 [Abstract] [Full Text] [Related]
18. Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique. Peng S, Li C, Tang C, Liu S, Huang S, Qiu L, Deng L. Materials (Basel); 2022 Nov 15; 15(22):. PubMed ID: 36431538 [Abstract] [Full Text] [Related]
19. Electrophoretic deposition on nonconducting substrates: a demonstration of the application to microwave devices. Vilarinho PM, Fu Z, Wu A, Axelsson A, Kingon AI. Langmuir; 2015 Feb 24; 31(7):2127-35. PubMed ID: 25635508 [Abstract] [Full Text] [Related]
20. Crystal structure and microwave dielectric behaviors of ultra-low-temperature fired x(Ag(0.5)Bi(0.5))MoO₄-(1 - x)BiVO₄ (0.0 ≤ x ≤ 1.0) solid solution with scheelite structure. Zhou D, Pang LX, Qi ZM. Inorg Chem; 2014 Sep 02; 53(17):9222-7. PubMed ID: 25105210 [Abstract] [Full Text] [Related] Page: [Next] [New Search]