These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Histomorphometric evaluation of strontium-containing nanostructured hydroxyapatite as bone substitute in sheep. Machado CP, Sartoretto SC, Alves AT, Lima IB, Rossi AM, Granjeiro JM, Calasans-Maia MD. Braz Oral Res; 2016; 30(1):e45. PubMed ID: 27191738 [Abstract] [Full Text] [Related]
24. The role of apoptosis associated speck-like protein containing a caspase-1 recruitment domain (ASC) in response to bone substitutes. Sartoretto SC, Calasans-Maia MD, Alves ATNN, Resende RFB, da Costa Fernandes CJ, de Magalhães Padilha P, Rossi AM, Teti A, Granjeiro JM, Zambuzzi WF. Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110965. PubMed ID: 32409093 [Abstract] [Full Text] [Related]
25. Relaxin enhances bone regeneration with BMP-2-loaded hydroxyapatite microspheres. Injamuri S, Rahaman MN, Shen Y, Huang YW. J Biomed Mater Res A; 2020 May; 108(5):1231-1242. PubMed ID: 32043751 [Abstract] [Full Text] [Related]
26. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Li H, Jiang F, Ye S, Wu Y, Zhu K, Wang D. Mater Sci Eng C Mater Biol Appl; 2016 May; 62():779-86. PubMed ID: 26952484 [Abstract] [Full Text] [Related]
27. Hydroxyapatite nanorod and microsphere functionalized with bioactive lactoferrin as a new biomaterial for enhancement bone regeneration. Shi P, Wang Q, Yu C, Fan F, Liu M, Tu M, Lu W, Du M. Colloids Surf B Biointerfaces; 2017 Jul 01; 155():477-486. PubMed ID: 28472751 [Abstract] [Full Text] [Related]
28. Preparation of resorbable carbonate-substituted hollow hydroxyapatite microspheres and their evaluation in osseous defects in vivo. Xiao W, Sonny Bal B, Rahaman MN. Mater Sci Eng C Mater Biol Appl; 2016 Mar 01; 60():324-332. PubMed ID: 26706537 [Abstract] [Full Text] [Related]
29. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Zhang H, Zhou Y, Yu N, Ma H, Wang K, Liu J, Zhang W, Cai Z, He Y. Acta Biomater; 2019 Jun 01; 91():82-98. PubMed ID: 30986527 [Abstract] [Full Text] [Related]
30. Microspheres containing biosynthesized silver nanoparticles with alginate-nano hydroxyapatite for biomedical applications. Dalavi PA, Prabhu A, Shastry RP, Venkatesan J. J Biomater Sci Polym Ed; 2020 Nov 01; 31(16):2025-2043. PubMed ID: 32648515 [Abstract] [Full Text] [Related]
31. [The preparation and characterization of sol-gel derived zinc modified carbonated hydroxyapatite]. Jiang HZ, Shi XC, Liao YM, Li W. Hua Xi Kou Qiang Yi Xue Za Zhi; 2008 Jun 01; 26(3):241-3, 247. PubMed ID: 18705501 [Abstract] [Full Text] [Related]
32. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Acta Biomater; 2016 Sep 15; 42():389-399. PubMed ID: 27326916 [Abstract] [Full Text] [Related]
33. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates. Hu Y, Ma S, Yang Z, Zhou W, Du Z, Huang J, Yi H, Wang C. Colloids Surf B Biointerfaces; 2016 Apr 01; 140():382-391. PubMed ID: 26774574 [Abstract] [Full Text] [Related]
34. Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair1. Santos GGD, Vasconcelos LQ, Poy SCDS, Almeida RDS, Barbosa Júnior AA, Santos SRA, Rossi AM, Miguel FB, Rosa FP. Acta Cir Bras; 2019 Feb 28; 34(2):e201900203. PubMed ID: 30843936 [Abstract] [Full Text] [Related]
35. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings. Robinson L, Salma-Ancane K, Stipniece L, Meenan BJ, Boyd AR. J Mater Sci Mater Med; 2017 Mar 28; 28(3):51. PubMed ID: 28197823 [Abstract] [Full Text] [Related]
36. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Zhong Q, Li W, Su X, Li G, Zhou Y, Kundu SC, Yao J, Cai Y. Colloids Surf B Biointerfaces; 2016 Jul 01; 143():56-63. PubMed ID: 26998866 [Abstract] [Full Text] [Related]
37. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Cholas R, Kunjalukkal Padmanabhan S, Gervaso F, Udayan G, Monaco G, Sannino A, Licciulli A. Mater Sci Eng C Mater Biol Appl; 2016 Jun 01; 63():499-505. PubMed ID: 27040244 [Abstract] [Full Text] [Related]
38. Bioresorbable zinc hydroxyapatite guided bone regeneration membrane for bone regeneration. Chou J, Komuro M, Hao J, Kuroda S, Hattori Y, Ben-Nissan B, Milthorpe B, Otsuka M. Clin Oral Implants Res; 2016 Mar 01; 27(3):354-60. PubMed ID: 25363210 [Abstract] [Full Text] [Related]
39. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. Zhou P, Wu J, Xia Y, Yuan Y, Zhang H, Xu S, Lin K. Int J Nanomedicine; 2018 Mar 01; 13():4083-4092. PubMed ID: 30034234 [Abstract] [Full Text] [Related]
40. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo. Jo YY, Kim SG, Kwon KJ, Kweon H, Chae WS, Yang WG, Lee EY, Seok H. Int J Mol Sci; 2017 Apr 18; 18(4):. PubMed ID: 28420224 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]