These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


708 related items for PubMed ID: 31196530

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L, Du X, Fan S, Yang G, Shao H, Li D, Cao C, Zhu Y, Zhu M, Zhang Y.
    Carbohydr Polym; 2019 Oct 01; 221():146-156. PubMed ID: 31227153
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S, Ajdary R, Bai L, Klar V, Rojas OJ.
    Biomacromolecules; 2019 Feb 11; 20(2):635-644. PubMed ID: 30240194
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation.
    Yan M, Lewis PL, Shah RN.
    Biofabrication; 2018 Jun 18; 10(3):035010. PubMed ID: 29848794
    [Abstract] [Full Text] [Related]

  • 28. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation.
    Wei J, Wang B, Li Z, Wu Z, Zhang M, Sheng N, Liang Q, Wang H, Chen S.
    Carbohydr Polym; 2020 Jun 15; 238():116207. PubMed ID: 32299554
    [Abstract] [Full Text] [Related]

  • 29. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration.
    Olmos-Juste R, Alonso-Lerma B, Pérez-Jiménez R, Gabilondo N, Eceiza A.
    Carbohydr Polym; 2021 Jul 15; 264():118026. PubMed ID: 33910718
    [Abstract] [Full Text] [Related]

  • 30. 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels.
    Fourmann O, Hausmann MK, Neels A, Schubert M, Nyström G, Zimmermann T, Siqueira G.
    Carbohydr Polym; 2021 May 01; 259():117716. PubMed ID: 33673992
    [Abstract] [Full Text] [Related]

  • 31. Acetylated Nanocellulose for Single-Component Bioinks and Cell Proliferation on 3D-Printed Scaffolds.
    Ajdary R, Huan S, Zanjanizadeh Ezazi N, Xiang W, Grande R, Santos HA, Rojas OJ.
    Biomacromolecules; 2019 Jul 08; 20(7):2770-2778. PubMed ID: 31117356
    [Abstract] [Full Text] [Related]

  • 32. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds.
    Guo J, Li Q, Zhang R, Li B, Zhang J, Yao L, Lin Z, Zhang L, Cao X, Duan B.
    Biomacromolecules; 2022 Mar 14; 23(3):877-888. PubMed ID: 35142493
    [Abstract] [Full Text] [Related]

  • 33. 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization.
    Ramirez Caballero SS, Saiz E, Montembault A, Tadier S, Maire E, David L, Delair T, Grémillard L.
    J Mater Sci Mater Med; 2018 Dec 29; 30(1):6. PubMed ID: 30594987
    [Abstract] [Full Text] [Related]

  • 34. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels.
    Jiang P, Yan C, Guo Y, Zhang X, Cai M, Jia X, Wang X, Zhou F.
    Biomater Sci; 2019 Apr 23; 7(5):1805-1814. PubMed ID: 30855616
    [Abstract] [Full Text] [Related]

  • 35. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K, Escalante A, Toriz G, Gatenholm P.
    ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40878-40886. PubMed ID: 29068193
    [Abstract] [Full Text] [Related]

  • 36. 3D printing process of oxidized nanocellulose and gelatin scaffold.
    Xu X, Zhou J, Jiang Y, Zhang Q, Shi H, Liu D.
    J Biomater Sci Polym Ed; 2018 Aug 22; 29(12):1498-1513. PubMed ID: 29716440
    [Abstract] [Full Text] [Related]

  • 37. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.
    Lapomarda A, Cerqueni G, Geven MA, Chiesa I, De Acutis A, De Blasi M, Montemurro F, De Maria C, Mattioli-Belmonte M, Vozzi G.
    Macromol Biosci; 2021 Sep 22; 21(9):e2100168. PubMed ID: 34173326
    [Abstract] [Full Text] [Related]

  • 38. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I.
    Mater Sci Eng C Mater Biol Appl; 2020 Aug 22; 113():111008. PubMed ID: 32487412
    [Abstract] [Full Text] [Related]

  • 39. 3D printing of photocurable poly(glycerol sebacate) elastomers.
    Yeh YC, Highley CB, Ouyang L, Burdick JA.
    Biofabrication; 2016 Oct 07; 8(4):045004. PubMed ID: 27716633
    [Abstract] [Full Text] [Related]

  • 40. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks.
    Adhikari J, Roy A, Das A, Ghosh M, Thomas S, Sinha A, Kim J, Saha P.
    Macromol Biosci; 2021 Jan 07; 21(1):e2000179. PubMed ID: 33017096
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 36.