These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
572 related items for PubMed ID: 31197488
1. Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Xu C, Ying Y, Ping J. Mikrochim Acta; 2019 Jun 13; 186(7):448. PubMed ID: 31197488 [Abstract] [Full Text] [Related]
2. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Liu M, Yang Z, Li B, Du J. Food Chem; 2021 Mar 01; 339():128059. PubMed ID: 33152864 [Abstract] [Full Text] [Related]
3. Microfluidic electrophoretic non-enzymatic kanamycin assay making use of a stirring bar functionalized with gold-labeled aptamer, of a fluorescent DNA probe, and of signal amplification via hybridization chain reaction. Zhang K, Gan N, Hu F, Chen X, Li T, Cao J. Mikrochim Acta; 2018 Feb 17; 185(3):181. PubMed ID: 29594631 [Abstract] [Full Text] [Related]
4. An aptasensor strip-based colorimetric determination method for kanamycin using cellulose acetate nanofibers decorated DNA-gold nanoparticle bioconjugates. Abedalwafa MA, Tang Z, Qiao Y, Mei Q, Yang G, Li Y, Wang L. Mikrochim Acta; 2020 May 29; 187(6):360. PubMed ID: 32468208 [Abstract] [Full Text] [Related]
5. Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles. Kong C, Gao L, Chen Z. Mikrochim Acta; 2018 Oct 02; 185(10):488. PubMed ID: 30280258 [Abstract] [Full Text] [Related]
6. Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Qu X, Wang J, Zhang R, Zhao Y, Li S, Wang Y, Liu S, Huang J, Yu J. Mikrochim Acta; 2020 Mar 02; 187(3):193. PubMed ID: 32124067 [Abstract] [Full Text] [Related]
7. A fluorometric aptamer method for kanamycin by applying a dual amplification strategy and using double Y-shaped DNA probes on a gold bar and on magnetite nanoparticles. Zhang K, Cao J, Wu Y, Hu F, Li T, Wang Y, Gan N. Mikrochim Acta; 2019 Jan 21; 186(2):120. PubMed ID: 30666478 [Abstract] [Full Text] [Related]
8. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Xu Y, Lu C, Sun Y, Shao Y, Cai Y, Zhang Y, Miao J, Miao P. Mikrochim Acta; 2018 Nov 13; 185(12):548. PubMed ID: 30426224 [Abstract] [Full Text] [Related]
9. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin. Li J, Liu Y, Lin H, Chen Y, Liu Z, Zhuang X, Tian C, Fu X, Chen L. Food Chem; 2021 Jun 15; 347():128988. PubMed ID: 33465686 [Abstract] [Full Text] [Related]
10. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Gao Z, Qiu Z, Lu M, Shu J, Tang D. Biosens Bioelectron; 2017 Mar 15; 89(Pt 2):1006-1012. PubMed ID: 27825528 [Abstract] [Full Text] [Related]
11. A colorimetric ATP assay based on the use of a magnesium(II)-dependent DNAzyme. Zhu S, Wang X, Jing C, Yin Y, Zhou N. Mikrochim Acta; 2019 Feb 15; 186(3):176. PubMed ID: 30771011 [Abstract] [Full Text] [Related]
12. A microfluidic chip based ratiometric aptasensor for antibiotic detection in foods using stir bar assisted sorptive extraction and rolling circle amplification. He L, Shen Z, Cao Y, Li T, Wu D, Dong Y, Gan N. Analyst; 2019 Apr 08; 144(8):2755-2764. PubMed ID: 30869681 [Abstract] [Full Text] [Related]
13. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Ma Q, Wang Y, Jia J, Xiang Y. Food Chem; 2018 May 30; 249():98-103. PubMed ID: 29407938 [Abstract] [Full Text] [Related]
14. Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification. Luan Q, Gan N, Cao Y, Li T. J Agric Food Chem; 2017 Jul 19; 65(28):5731-5740. PubMed ID: 28654744 [Abstract] [Full Text] [Related]
15. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification. Wang Q, Yang X, Yang X, Liu P, Wang K, Huang J, Liu J, Song C, Wang J. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb 05; 136 Pt B():283-7. PubMed ID: 25448931 [Abstract] [Full Text] [Related]
16. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Du Y, Zhou Y, Wen Y, Bian X, Xie Y, Zhang W, Liu G, Yan J. Mikrochim Acta; 2019 Nov 25; 186(12):840. PubMed ID: 31768650 [Abstract] [Full Text] [Related]
17. An enzyme-free colorimetric assay using hybridization chain reaction amplification and split aptamers. Wang Q, Yang X, Yang X, Wang K, Zhang H, Liu P. Analyst; 2015 Nov 21; 140(22):7657-62. PubMed ID: 26442287 [Abstract] [Full Text] [Related]
18. Colorimetric detection of kanamycin based on analyte-protected silver nanoparticles and aptamer-selective sensing mechanism. Xu Y, Han T, Li X, Sun L, Zhang Y, Zhang Y. Anal Chim Acta; 2015 Sep 03; 891():298-303. PubMed ID: 26388390 [Abstract] [Full Text] [Related]
19. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J, Fu HE, Wu LJ, Zheng AX, Chen GN, Yang HH. Anal Chem; 2012 Jun 19; 84(12):5309-15. PubMed ID: 22642720 [Abstract] [Full Text] [Related]