These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
319 related items for PubMed ID: 31197585
1. Fluorometric and resonance Rayleigh scattering dual-mode bioprobe for determination of the activity of alkaline phosphatase based on the use of CoOOH nanoflakes and cobalt(II)-dependent DNAzyme-assisted amplification. Zhou J, Ling Y, Li NB, Luo HQ. Mikrochim Acta; 2019 Jun 13; 186(7):437. PubMed ID: 31197585 [Abstract] [Full Text] [Related]
2. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM. Mikrochim Acta; 2018 Jan 10; 185(2):102. PubMed ID: 29594450 [Abstract] [Full Text] [Related]
3. Portable smartphone device-based multi-signal sensing system for on-site and visual determination of alkaline phosphatase in human serum. Zhang S, Lu Z, Li S, Wang T, Li J, Chen M, Chen S, Sun M, Wang Y, Rao H, Liu T. Mikrochim Acta; 2021 Apr 06; 188(5):157. PubMed ID: 33825047 [Abstract] [Full Text] [Related]
4. Fluorometric and colorimetric dual-readout alkaline phosphatase activity assay based on enzymatically induced formation of colored Au@Ag nanoparticles and an inner filter effect. Chen C, Zhang G, Ni P, Jiang Y, Lu Y, Lu Z. Mikrochim Acta; 2019 May 11; 186(6):348. PubMed ID: 31079308 [Abstract] [Full Text] [Related]
5. Redox-Responsive Breakup of a Nucleic Acids@CoOOH Nanocomplex Triggering Cascade Recycling Amplification for Sensitive Sensing of Alkaline Phosphatase. Li S, Dong Q, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Anal Chem; 2022 May 10; 94(18):6711-6718. PubMed ID: 35486137 [Abstract] [Full Text] [Related]
6. Size-dependent light scattering of CoOOH nanoflakes for convenient and sensitive detection of alkaline phosphatase in human serum. Zhu LN, Cheng R, Kang KW, Chen MY, Zhan T, Wang J. Luminescence; 2021 Aug 10; 36(5):1317-1326. PubMed ID: 33870595 [Abstract] [Full Text] [Related]
7. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Li L, Wang C, Liu K, Wang Y, Liu K, Lin Y. Anal Chem; 2015 Mar 17; 87(6):3404-11. PubMed ID: 25697047 [Abstract] [Full Text] [Related]
8. Pyrophosphate-regulated Zn(2+)-dependent DNAzyme activity: an amplified fluorescence sensing strategy for alkaline phosphatase. Kong RM, Fu T, Sun NN, Qu FL, Zhang SF, Zhang XB. Biosens Bioelectron; 2013 Dec 15; 50():351-5. PubMed ID: 23891797 [Abstract] [Full Text] [Related]
9. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ. J Mater Chem B; 2018 May 14; 6(18):2843-2850. PubMed ID: 32254237 [Abstract] [Full Text] [Related]
10. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH. Zhang H, Wang Z, Yang X, Li ZL, Sun L, Ma J, Jiang H. Anal Chim Acta; 2019 Nov 08; 1080():170-177. PubMed ID: 31409467 [Abstract] [Full Text] [Related]
11. A ratiometric fluorescence-scattered light strategy based on MoS2 quantum dots/CoOOH nanoflakes system for ascorbic acid detection. Wu Z, Nan D, Yang H, Pan S, Liu H, Hu X. Anal Chim Acta; 2019 Dec 24; 1091():59-68. PubMed ID: 31679575 [Abstract] [Full Text] [Related]
12. Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Yan H, Liu Y, Ren W, Shangguan J, Yang X. Mikrochim Acta; 2019 Feb 22; 186(3):201. PubMed ID: 30796531 [Abstract] [Full Text] [Related]
13. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Xue Q, Cao X, Zhang C, Xian Y. Mikrochim Acta; 2018 Mar 19; 185(4):231. PubMed ID: 29594735 [Abstract] [Full Text] [Related]
14. A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme. Zhao M, Guo Y, Wang L, Luo F, Lin C, Lin Z, Chen G. Anal Chim Acta; 2016 Dec 15; 948():98-103. PubMed ID: 27871616 [Abstract] [Full Text] [Related]
15. Fluorescent assay for alkaline phosphatase by integrating strand displacement amplification with DNAzyme-catalytic recycling cleavage of molecular beacons. Chen Y, Yan J, Wang X, Zhang S, Li J, Tang Y, Wang T. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec 05; 302():122984. PubMed ID: 37331255 [Abstract] [Full Text] [Related]
16. In-situ growth of cobalt oxyhydroxide on graphitic-phase C3N4 nanosheets for fluorescence turn-on detection and imaging of ascorbic acid in living cells. Lv Y, Jiang C, Hu K, Huang Y, He Y, Shen X, Zhao S. Mikrochim Acta; 2019 May 16; 186(6):360. PubMed ID: 31098844 [Abstract] [Full Text] [Related]
17. DNAzyme-Au nanoprobe coupled with graphene-oxide-loaded hybridization chain reaction signal amplification for fluorometric determination of alkaline phosphatase. Lv Z, Wang Q, Yang M. Mikrochim Acta; 2021 Jan 02; 188(1):7. PubMed ID: 33389193 [Abstract] [Full Text] [Related]
18. Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Kong W, Tan Q, Guo H, Sun H, Qin X, Qu F. Mikrochim Acta; 2019 Jan 09; 186(2):73. PubMed ID: 30627836 [Abstract] [Full Text] [Related]