These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q, Liu Y, Hou X, Zhang X, Li H, Zhang J, Liu H, Hu Y, Yu G, Li Y, Wang Y, Huang Y. BMC Plant Biol; 2019 Sep 09; 19(1):392. PubMed ID: 31500559 [Abstract] [Full Text] [Related]
5. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. Thiemann A, Fu J, Seifert F, Grant-Downton RT, Schrag TA, Pospisil H, Frisch M, Melchinger AE, Scholten S. BMC Plant Biol; 2014 Apr 02; 14():88. PubMed ID: 24693880 [Abstract] [Full Text] [Related]
6. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Wang B, Hou M, Shi J, Ku L, Song W, Li C, Ning Q, Li X, Li C, Zhao B, Zhang R, Xu H, Bai Z, Xia Z, Wang H, Kong D, Wei H, Jing Y, Dai Z, Wang HH, Zhu X, Li C, Sun X, Wang S, Yao W, Hou G, Qi Z, Dai H, Li X, Zheng H, Zhang Z, Li Y, Wang T, Jiang T, Wan Z, Chen Y, Zhao J, Lai J, Wang H. Nat Genet; 2023 Feb 02; 55(2):312-323. PubMed ID: 36646891 [Abstract] [Full Text] [Related]
7. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2574-9. PubMed ID: 12604771 [Abstract] [Full Text] [Related]
8. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N, Hao Z, Liu K, Zhu C, Huang T, Zhao Q, Zhang L, Fan D, Zhou C, Lu Y, Weng Q, Wang ZX, Li J, Han B. Nat Commun; 2015 Feb 05; 6():6258. PubMed ID: 25651972 [Abstract] [Full Text] [Related]
9. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci. Shen G, Hu W, Wang X, Zhou X, Han Z, Sherif A, Ayaad M, Xing Y. J Integr Plant Biol; 2022 Mar 05; 64(3):688-701. PubMed ID: 34995015 [Abstract] [Full Text] [Related]
10. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.). Liu Y, Yi Q, Hou X, Hu Y, Li Y, Yu G, Liu H, Zhang J, Huang Y. Mol Genet Genomics; 2020 Jan 05; 295(1):121-133. PubMed ID: 31511973 [Abstract] [Full Text] [Related]
11. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B. Theor Appl Genet; 2006 Sep 05; 113(5):831-45. PubMed ID: 16868764 [Abstract] [Full Text] [Related]
12. Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid. Ding H, Qin C, Luo X, Li L, Chen Z, Liu H, Gao J, Lin H, Shen Y, Zhao M, Lübberstedt T, Zhang Z, Pan G. Int J Mol Sci; 2014 Aug 11; 15(8):13892-915. PubMed ID: 25116687 [Abstract] [Full Text] [Related]
13. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE. Genetics; 2014 Aug 11; 197(4):1343-55. PubMed ID: 24850820 [Abstract] [Full Text] [Related]
14. Exploring the molecular basis of heterosis for plant breeding. Liu J, Li M, Zhang Q, Wei X, Huang X. J Integr Plant Biol; 2020 Mar 11; 62(3):287-298. PubMed ID: 30916464 [Abstract] [Full Text] [Related]
15. Genomic architecture of heterosis for yield traits in rice. Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, Zhao Y, Li W, Cheng B, Xia J, Chen N, Huang T, Zhang L, Fan D, Chen J, Zhou C, Lu Y, Weng Q, Han B. Nature; 2016 Sep 29; 537(7622):629-633. PubMed ID: 27602511 [Abstract] [Full Text] [Related]
16. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Li C, Guan H, Jing X, Li Y, Wang B, Li Y, Liu X, Zhang D, Liu C, Xie X, Zhao H, Wang Y, Liu J, Zhang P, Hu G, Li G, Li S, Sun D, Wang X, Shi Y, Song Y, Jiao C, Ross-Ibarra J, Li Y, Wang T, Wang H. Nat Plants; 2022 Jul 29; 8(7):750-763. PubMed ID: 35851624 [Abstract] [Full Text] [Related]
17. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J. Theor Appl Genet; 2010 Jan 29; 120(2):333-40. PubMed ID: 19936698 [Abstract] [Full Text] [Related]
18. Identifying QTLs involved in hybrid performance and heterotic group complementarity: new GWAS models applied to factorial and admixed diallel maize hybrid panels. Beugnot A, Mary-Huard T, Bauland C, Combes V, Madur D, Lagardère B, Palaffre C, Charcosset A, Moreau L, Fievet JB. Theor Appl Genet; 2023 Oct 10; 136(11):219. PubMed ID: 37816986 [Abstract] [Full Text] [Related]
19. Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J. PLoS Genet; 2017 Sep 10; 13(9):e1007019. PubMed ID: 28953891 [Abstract] [Full Text] [Related]
20. Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III. Li H, Yang Q, Fan N, Zhang M, Zhai H, Ni Z, Zhang Y. BMC Genet; 2017 Apr 17; 18(1):36. PubMed ID: 28415964 [Abstract] [Full Text] [Related] Page: [Next] [New Search]