These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


184 related items for PubMed ID: 31199249

  • 1. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS, Gharibans AA, Allegra AA, Kunkel DC, Coleman TP.
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [Abstract] [Full Text] [Related]

  • 2. What can be measured from surface electrogastrography. Computer simulations.
    Liang J, Chen JD.
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [Abstract] [Full Text] [Related]

  • 3. Spatial Patterns From High-Resolution Electrogastrography Correlate With Severity of Symptoms in Patients With Functional Dyspepsia and Gastroparesis.
    Gharibans AA, Coleman TP, Mousa H, Kunkel DC.
    Clin Gastroenterol Hepatol; 2019 Dec; 17(13):2668-2677. PubMed ID: 31009794
    [Abstract] [Full Text] [Related]

  • 4. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array.
    Sukasem A, Calder S, Angeli-Gordon TR, Andrews CN, O'Grady G, Gharibans A, Du P.
    Biomed Eng Online; 2022 Jun 27; 21(1):43. PubMed ID: 35761323
    [Abstract] [Full Text] [Related]

  • 5. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P, O'Grady G, Cheng LK, Pullan AJ.
    Biophys J; 2010 Nov 03; 99(9):2784-92. PubMed ID: 21044575
    [Abstract] [Full Text] [Related]

  • 6. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R, Paskaranandavadivel N, Du P, Trew ML, O'Grady G, Windsor JA, Cheng LK.
    Surg Endosc; 2017 Jan 03; 31(1):477-486. PubMed ID: 27129554
    [Abstract] [Full Text] [Related]

  • 7. A novel laparoscopic device for measuring gastrointestinal slow-wave activity.
    O'Grady G, Du P, Egbuji JU, Lammers WJ, Wahab A, Pullan AJ, Cheng LK, Windsor JA.
    Surg Endosc; 2009 Dec 03; 23(12):2842-8. PubMed ID: 19466491
    [Abstract] [Full Text] [Related]

  • 8. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA, Irimia A, Sims JA, Gallucci MR, Palmer RL, Richards WO.
    Neurogastroenterol Motil; 2006 Aug 03; 18(8):619-31. PubMed ID: 16918726
    [Abstract] [Full Text] [Related]

  • 9. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA, Paskaranandavadivel N, Alighaleh S, Cheng LK, Angeli TR.
    Ann Biomed Eng; 2020 Apr 03; 48(4):1407-1418. PubMed ID: 31980997
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S, Cheng LK, Andrews CN, Paskaranandavadivel N, Waite S, Alighaleh S, Erickson JC, Gharibans A, O'Grady G, Du P.
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct 01; 323(4):G295-G305. PubMed ID: 35916432
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Robust Methods to Detect Abnormal Initiation in the Gastric Slow Wave from Cutaneous Recordings.
    Agrusa AS, Allegra AB, Kunkel DC, Coleman TP.
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 01; 2020():225-231. PubMed ID: 33017970
    [Abstract] [Full Text] [Related]

  • 15. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA, Kim JH, Somarajan S, Richards WO, Cheng LK.
    IEEE Trans Biomed Eng; 2016 Aug 01; 63(8):1751-9. PubMed ID: 26595907
    [Abstract] [Full Text] [Related]

  • 16. A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography.
    Calder S, O'Grady G, Cheng LK, Du P.
    IEEE Trans Biomed Eng; 2020 Mar 01; 67(3):868-875. PubMed ID: 31199250
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ, Ver Donck L, Stephen B, Smets D, Schuurkes JA.
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun 01; 296(6):G1200-10. PubMed ID: 19359425
    [Abstract] [Full Text] [Related]

  • 19. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping.
    O'Grady G, Angeli TR, Du P, Lahr C, Lammers WJEP, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK.
    Gastroenterology; 2012 Sep 01; 143(3):589-598.e3. PubMed ID: 22643349
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.