These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 31199936

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Impact of standard test protocols on sporicidal efficacy.
    Wesgate R, Rauwel G, Criquelion J, Maillard JY.
    J Hosp Infect; 2016 Jul; 93(3):256-62. PubMed ID: 27133281
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Sporicidal activity of two disinfectants against Clostridium difficile spores.
    Wheeldon LJ, Worthington T, Hilton AC, Lambert PA, Elliott TS.
    Br J Nurs; 2016 Jul; 17(5):316-20. PubMed ID: 18414294
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. [Comparison of susceptibility of spores of Bacillus subtilis and Czech strains of Clostridium difficile to disinfectants].
    Votava M, Slitrová B.
    Epidemiol Mikrobiol Imunol; 2009 Feb; 58(1):36-42. PubMed ID: 19358452
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Efficacy of three surface disinfectants against spores of Clostridium difficile ribotype 027.
    Horejsh D, Kampf G.
    Int J Hyg Environ Health; 2011 Mar; 214(2):172-4. PubMed ID: 21134785
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The differential effects of heat-shocking on the viability of spores from Bacillus anthracis, Bacillus subtilis, and Clostridium sporogenes after treatment with peracetic acid- and glutaraldehyde-based disinfectants.
    March JK, Pratt MD, Lowe CW, Cohen MN, Satterfield BA, Schaalje B, O'Neill KL, Robison RA.
    Microbiologyopen; 2015 Oct; 4(5):764-73. PubMed ID: 26185111
    [Abstract] [Full Text] [Related]

  • 15. Synergistic efficacy of 405 nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores.
    Moorhead S, Maclean M, Coia JE, MacGregor SJ, Anderson JG.
    Anaerobe; 2016 Feb; 37():72-7. PubMed ID: 26708703
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Disinfection methods for spores of Bacillus atrophaeus, B. anthracis, Clostridium tetani, C. botulinum and C. difficile.
    Oie S, Obayashi A, Yamasaki H, Furukawa H, Kenri T, Takahashi M, Kawamoto K, Makino S.
    Biol Pharm Bull; 2011 Feb; 34(8):1325-9. PubMed ID: 21804226
    [Abstract] [Full Text] [Related]

  • 18. The activity of glutaraldehyde against Clostridium difficile.
    Dyas A, Das BC.
    J Hosp Infect; 1985 Mar; 6(1):41-5. PubMed ID: 2859321
    [Abstract] [Full Text] [Related]

  • 19. The effect of Perasafe and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces.
    Block C.
    J Hosp Infect; 2004 Jun; 57(2):144-8. PubMed ID: 15183245
    [Abstract] [Full Text] [Related]

  • 20. Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility.
    Dyer C, Hutt LP, Burky R, Joshi LT.
    Appl Environ Microbiol; 2019 Sep 01; 85(17):. PubMed ID: 31300397
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.