These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
492 related items for PubMed ID: 31203755
21. The complex drivers of thermal acclimation and breadth in ectotherms. Rohr JR, Civitello DJ, Cohen JM, Roznik EA, Sinervo B, Dell AI. Ecol Lett; 2018 Sep; 21(9):1425-1439. PubMed ID: 30009486 [Abstract] [Full Text] [Related]
22. Arboreality drives heat tolerance while elevation drives cold tolerance in tropical rainforest ants. Leahy L, Scheffers BR, Williams SE, Andersen AN. Ecology; 2022 Jan; 103(1):e03549. PubMed ID: 34618920 [Abstract] [Full Text] [Related]
23. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Komoroske LM, Connon RE, Jeffries KM, Fangue NA. Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983 [Abstract] [Full Text] [Related]
24. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits. Pintor AF, Schwarzkopf L, Krockenberger AK. PLoS One; 2016 Oct; 11(3):e0150408. PubMed ID: 26990769 [Abstract] [Full Text] [Related]
25. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. Rubalcaba JG, Olalla-Tárraga MÁ. J Anim Ecol; 2020 May; 89(5):1277-1285. PubMed ID: 31990044 [Abstract] [Full Text] [Related]
26. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation. Páez-Vacas MI, Funk WC. J Therm Biol; 2024 Feb; 120():103815. PubMed ID: 38402728 [Abstract] [Full Text] [Related]
28. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Stillman JH, Somero GN. Physiol Biochem Zool; 2000 Sep; 73(2):200-8. PubMed ID: 10801398 [Abstract] [Full Text] [Related]
29. Does heat tolerance actually predict animals' geographic thermal limits? Camacho A, Rodrigues MT, Jayyusi R, Harun M, Geraci M, Carretero MA, Vinagre C, Tejedo M. Sci Total Environ; 2024 Mar 20; 917():170165. PubMed ID: 38242475 [Abstract] [Full Text] [Related]
30. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Aragon-Traverso JH, Piñeiro M, Olivares JPS, Sanabria EA. Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov 20; 285():111505. PubMed ID: 37619666 [Abstract] [Full Text] [Related]
31. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. Yilmaz AR, Chick LD, Perez A, Strickler SA, Vaughn S, Martin RA, Diamond SE. J Therm Biol; 2019 Oct 20; 85():102426. PubMed ID: 31657738 [Abstract] [Full Text] [Related]
32. Drawing the line: Linear or non-linear reaction norms in response to adult acclimation on lower thermal limits. Sørensen JG, Winther ML, Salachan PV, MacLean HJ. J Insect Physiol; 2020 Jul 20; 124():104075. PubMed ID: 32540466 [Abstract] [Full Text] [Related]
33. It's about time: Linkages between heat tolerance, thermal acclimation and metabolic rate at different temporal scales in the freshwater amphipod Gammarus fossarum Koch, 1836. Semsar-Kazerouni M, Verberk WCEP. J Therm Biol; 2018 Jul 20; 75():31-37. PubMed ID: 30017049 [Abstract] [Full Text] [Related]
34. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Gerken AR, Eller OC, Hahn DA, Morgan TJ. Proc Natl Acad Sci U S A; 2015 Apr 07; 112(14):4399-404. PubMed ID: 25805817 [Abstract] [Full Text] [Related]
35. Thermal limits of leaf metabolism across biomes. O'sullivan OS, Heskel MA, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Zhu L, Egerton JJ, Bloomfield KJ, Creek D, Bahar NH, Griffin KL, Hurry V, Meir P, Turnbull MH, Atkin OK. Glob Chang Biol; 2017 Jan 07; 23(1):209-223. PubMed ID: 27562605 [Abstract] [Full Text] [Related]
36. An alternative explanation for global trends in thermal tolerance. Payne NL, Smith JA. Ecol Lett; 2017 Jan 07; 20(1):70-77. PubMed ID: 27905195 [Abstract] [Full Text] [Related]
37. How Extreme Temperatures Impact Organisms and the Evolution of their Thermal Tolerance. Buckley LB, Huey RB. Integr Comp Biol; 2016 Jul 07; 56(1):98-109. PubMed ID: 27126981 [Abstract] [Full Text] [Related]
38. Narrow safety margin in the phyllosphere during thermal extremes. Pincebourde S, Casas J. Proc Natl Acad Sci U S A; 2019 Mar 19; 116(12):5588-5596. PubMed ID: 30782803 [Abstract] [Full Text] [Related]
39. Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen. Spicer JI, Morley SA, Bozinovic F. Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20190032. PubMed ID: 31203758 [Abstract] [Full Text] [Related]
40. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance. Holmstrup M, Sørensen JG, Dai W, Krogh PH, Schmelz RM, Slotsbo S. J Comp Physiol B; 2022 Jul 05; 192(3-4):435-445. PubMed ID: 35312816 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]