These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


492 related items for PubMed ID: 31203755

  • 41. Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes.
    Paganini AW, Miller NA, Stillman JH.
    J Exp Biol; 2014 Nov 15; 217(Pt 22):3974-80. PubMed ID: 25392458
    [Abstract] [Full Text] [Related]

  • 42. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes.
    Nati JJH, Svendsen MBS, Marras S, Killen SS, Steffensen JF, McKenzie DJ, Domenici P.
    Sci Rep; 2021 Oct 28; 11(1):21272. PubMed ID: 34711864
    [Abstract] [Full Text] [Related]

  • 43. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude.
    Broitman BR, Lagos NA, Opitz T, Figueroa D, Maldonado K, Ricote N, Lardies MA.
    J Anim Ecol; 2021 Aug 28; 90(8):1961-1972. PubMed ID: 33942301
    [Abstract] [Full Text] [Related]

  • 44. Sex-specific thermal tolerance limits in the ditch shrimp Palaemon varians: Eco-evolutionary implications under a warming ocean.
    Missionário M, Fernandes JF, Travesso M, Freitas E, Calado R, Madeira D.
    J Therm Biol; 2022 Jan 28; 103():103151. PubMed ID: 35027201
    [Abstract] [Full Text] [Related]

  • 45. Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation.
    Campos DF, Amanajás RD, Almeida-Val VMF, Val AL.
    J Exp Zool A Ecol Integr Physiol; 2021 Nov 28; 335(9-10):723-734. PubMed ID: 33689240
    [Abstract] [Full Text] [Related]

  • 46. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC, Burness G, Burgomaster KA, Currie S, McDermid JL, Wilson CC.
    Physiol Biochem Zool; 2014 Nov 28; 87(1):15-29. PubMed ID: 24457918
    [Abstract] [Full Text] [Related]

  • 47. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans.
    van Heerwaarden B, Sgrò CM.
    J Evol Biol; 2013 Apr 28; 26(4):800-9. PubMed ID: 23517493
    [Abstract] [Full Text] [Related]

  • 48. Limited plasticity in thermally tolerant ectotherm populations: evidence for a trade-off.
    Barley JM, Cheng BS, Sasaki M, Gignoux-Wolfsohn S, Hays CG, Putnam AB, Sheth S, Villeneuve AR, Kelly M.
    Proc Biol Sci; 2021 Sep 08; 288(1958):20210765. PubMed ID: 34493077
    [Abstract] [Full Text] [Related]

  • 49. Egg incubation temperature does not influence adult heat tolerance in the lizard Anolis sagrei.
    Gunderson AR, Fargevieille A, Warner DA.
    Biol Lett; 2020 Jan 08; 16(1):20190716. PubMed ID: 31937216
    [Abstract] [Full Text] [Related]

  • 50. Thermal Acclimation Ability Varies in Temperate and Tropical Aquatic Insects from Different Elevations.
    Shah AA, Funk WC, Ghalambor CK.
    Integr Comp Biol; 2017 Nov 01; 57(5):977-987. PubMed ID: 29087493
    [Abstract] [Full Text] [Related]

  • 51. Thermal tolerance does not explain the altitudinal segregation of lowland and alpine aquatic insects.
    Carbonell JA, Pallarés S, Velasco J, Millán A, Abellán P.
    J Therm Biol; 2024 Apr 01; 121():103862. PubMed ID: 38703597
    [Abstract] [Full Text] [Related]

  • 52. Experimental Support That Natural Selection Has Shaped the Latitudinal Distribution of Mitochondrial Haplotypes in Australian Drosophila melanogaster.
    Camus MF, Wolff JN, Sgrò CM, Dowling DK.
    Mol Biol Evol; 2017 Oct 01; 34(10):2600-2612. PubMed ID: 28637217
    [Abstract] [Full Text] [Related]

  • 53. Time course of acclimation of critical thermal limits in two springtail species (Collembola).
    Kuyucu AC, Chown SL.
    J Insect Physiol; 2021 Apr 01; 130():104209. PubMed ID: 33609519
    [Abstract] [Full Text] [Related]

  • 54. Chronic warm exposure impairs growth performance and reduces thermal safety margins in the common triplefin fish (Forsterygion lapillum).
    McArley TJ, Hickey AJR, Herbert NA.
    J Exp Biol; 2017 Oct 01; 220(Pt 19):3527-3535. PubMed ID: 28760830
    [Abstract] [Full Text] [Related]

  • 55. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.
    Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S.
    Conserv Physiol; 2016 Oct 01; 4(1):cow053. PubMed ID: 27933165
    [Abstract] [Full Text] [Related]

  • 56. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM, Overgaard J, Kristensen TN, Mitchell KA, Cockerell FE, Hoffmann AA.
    J Evol Biol; 2010 Nov 01; 23(11):2484-93. PubMed ID: 20874849
    [Abstract] [Full Text] [Related]

  • 57. Low temperatures impact species distributions of jumping spiders across a desert elevational cline.
    Brandt EE, Roberts KT, Williams CM, Elias DO.
    J Insect Physiol; 2020 Apr 01; 122():104037. PubMed ID: 32087221
    [Abstract] [Full Text] [Related]

  • 58. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions.
    Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S.
    Ecol Lett; 2022 Oct 01; 25(10):2245-2268. PubMed ID: 36006770
    [Abstract] [Full Text] [Related]

  • 59. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN.
    J Exp Biol; 2010 Mar 15; 213(6):912-20. PubMed ID: 20190116
    [Abstract] [Full Text] [Related]

  • 60. A mechanistic oxygen- and temperature-limited metabolic niche framework.
    Ern R.
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20180540. PubMed ID: 31203757
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.