These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
127 related items for PubMed ID: 3120454
1. Role of membrane-bound haemoglobin products in oxidative damage in sickle cell membranes. Rice-Evans C, Baysal E. Acta Haematol; 1987; 78(2-3):105-8. PubMed ID: 3120454 [Abstract] [Full Text] [Related]
3. Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes. Shalev O, Hebbel RP. Blood; 1996 May 01; 87(9):3948-52. PubMed ID: 8611725 [Abstract] [Full Text] [Related]
4. Iron compartments associated with sickle RBC membranes: a mechanism for the targeting of oxidative damage. Kuross SA, Rank BH, Hebbel RP. Prog Clin Biol Res; 1989 May 01; 319():601-10; discussion 611-3. PubMed ID: 2622931 [No Abstract] [Full Text] [Related]
5. Auto-oxidation and a membrane-associated 'Fenton reagent': a possible explanation for development of membrane lesions in sickle erythrocytes. Hebbel RP. Clin Haematol; 1985 Feb 01; 14(1):129-40. PubMed ID: 2985310 [Abstract] [Full Text] [Related]
6. The use of cis-parinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes. Van den Berg JJ, Kuypers FA, Qju JH, Chiu D, Lubin B, Roelofsen B, Op den Kamp JA. Biochim Biophys Acta; 1988 Sep 15; 944(1):29-39. PubMed ID: 3415998 [Abstract] [Full Text] [Related]
7. Detection, characterization, and bioavailability of membrane-associated iron in the intact sickle red cell. Sugihara T, Repka T, Hebbel RP. J Clin Invest; 1992 Dec 15; 90(6):2327-32. PubMed ID: 1469090 [Abstract] [Full Text] [Related]
8. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation. Kuross SA, Hebbel RP. Blood; 1988 Oct 15; 72(4):1278-85. PubMed ID: 3167208 [Abstract] [Full Text] [Related]
9. Hemoglobin aggregation in oxygenated sickle cells studies by carbon-13 rotating frame spin-lattice relaxation in the presence of an off-resonance radiofrequency field. James TL, Matthews R, Matson GB. Biopolymers; 1979 Jul 15; 18(7):1763-8. PubMed ID: 540130 [No Abstract] [Full Text] [Related]
10. Genetic model for observed distributions of proportions of haemoglobin in sickle-cell trait. Brittenham G. Nature; 1977 Aug 18; 268(5621):635-6. PubMed ID: 895858 [No Abstract] [Full Text] [Related]
11. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes. Hartley A, Davies M, Rice-Evans C. FEBS Lett; 1990 May 07; 264(1):145-8. PubMed ID: 2159892 [Abstract] [Full Text] [Related]
12. Alterations in sensitivity to calcium and enzymatic hydrolysis of membranes from sickle cell disease and trait erythrocytes. Judd AM, Best KB, Christensen K, Rodgers GM, Bell JD. Am J Hematol; 2003 Mar 07; 72(3):162-9. PubMed ID: 12605387 [Abstract] [Full Text] [Related]
13. Erythrocyte and plasma magnesium in sickle-cell anaemia. Olukoga AO, Adewoye HO, Erasmus RT, Adedoyin MA. East Afr Med J; 1990 May 07; 67(5):348-54. PubMed ID: 2390957 [Abstract] [Full Text] [Related]
15. Spin label study of hemoglobin membrane interactions in normal and sickle erythrocytes. Jones GL. Proc West Pharmacol Soc; 1979 Apr 07; 22():79-86. PubMed ID: 515098 [No Abstract] [Full Text] [Related]
16. The significance of irregularly contracted cells and hemighosts in sickle cell disease. Siow W, Matthey F, Bain BJ. Am J Hematol; 2017 Sep 07; 92(9):966-967. PubMed ID: 28120521 [No Abstract] [Full Text] [Related]