These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


424 related items for PubMed ID: 31212318

  • 1. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1.
    Jonker A, Hickey SM, McEwan JC, Rowe SJ, Janssen PH, MacLean S, Sandoval E, Lewis S, Kjestrup H, Molano G, Agnew M, Young EA, Dodds KG, Knowler K, Pinares-Patiño CS.
    J Anim Sci; 2019 Jul 02; 97(7):2711-2724. PubMed ID: 31212318
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Methane emissions changed nonlinearly with graded substitution of alfalfa silage with corn silage and corn grain in the diet of sheep and relation with rumen fermentation characteristics in vivo and in vitro.
    Jonker A, Lowe K, Kittelmann S, Janssen PH, Ledgard S, Pacheco D.
    J Anim Sci; 2016 Aug 02; 94(8):3464-3475. PubMed ID: 27695787
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Substituting ryegrass-based pasture with graded levels of forage rape in the diet of lambs decreases methane emissions and increases propionate, succinate, and primary alcohols in the rumen.
    Della Rosa MM, Sandoval E, Reid P, Luo D, Pacheco D, Janssen PH, Jonker A.
    J Anim Sci; 2022 Sep 01; 100(9):. PubMed ID: 35723288
    [Abstract] [Full Text] [Related]

  • 8. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats.
    Wang M, Wang R, Zhang X, Ungerfeld EM, Long D, Mao H, Jiao J, Beauchemin KA, Tan Z.
    Br J Nutr; 2017 Sep 01; 118(6):401-410. PubMed ID: 28927478
    [Abstract] [Full Text] [Related]

  • 9. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S, Visker MHPW, Edwards JE, Antunes-Fernandes EC, Hettinga KA, Alferink SJJ, Hendriks WH, Bovenhuis H, Smidt H, Dijkstra J.
    J Dairy Sci; 2017 Nov 01; 100(11):8939-8957. PubMed ID: 28918153
    [Abstract] [Full Text] [Related]

  • 10. Dynamics of methanogenesis, ruminal fermentation, and alfalfa degradation during adaptation to monensin supplementation in goats.
    Li ZJ, Ren H, Liu SM, Cai CJ, Han JT, Li F, Yao JH.
    J Dairy Sci; 2018 Feb 01; 101(2):1048-1059. PubMed ID: 29248222
    [Abstract] [Full Text] [Related]

  • 11. Sheep from low-methane-yield selection lines created on alfalfa pellets also have lower methane yield under pastoral farming conditions.
    Jonker A, Hickey S, Pinares-Patiño C, McEwan J, Olinga S, Díaz A, Molano G, MacLean S, Sandoval E, Harland R, Birch D, Bryson B, Knowler K, Rowe S.
    J Anim Sci; 2017 Sep 01; 95(9):3905-3913. PubMed ID: 28991992
    [Abstract] [Full Text] [Related]

  • 12. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats.
    Romero P, Huang R, Jiménez E, Palma-Hidalgo JM, Ungerfeld EM, Popova M, Morgavi DP, Belanche A, Yáñez-Ruiz DR.
    Animal; 2023 May 01; 17(5):100789. PubMed ID: 37087998
    [Abstract] [Full Text] [Related]

  • 13. The acute effects of rumen pulse-dosing of hydrogen acceptors during methane inhibition with nitrate or 3-nitrooxypropanol in dairy cows.
    Maigaard M, Weisbjerg MR, Hellwing ALF, Larsen M, Andersen FB, Lund P.
    J Dairy Sci; 2024 Aug 01; 107(8):5681-5698. PubMed ID: 38608947
    [Abstract] [Full Text] [Related]

  • 14. Feeding lactose increases ruminal butyrate and plasma beta-hydroxybutyrate in lactating dairy cows.
    DeFrain JM, Hippen AR, Kalscheur KF, Schingoethe DJ.
    J Dairy Sci; 2004 Aug 01; 87(8):2486-94. PubMed ID: 15328272
    [Abstract] [Full Text] [Related]

  • 15. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep.
    Goiri I, Oregui LM, Garcia-Rodriguez A.
    J Anim Sci; 2010 Feb 01; 88(2):749-55. PubMed ID: 19854994
    [Abstract] [Full Text] [Related]

  • 16. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro.
    Russell JB.
    J Dairy Sci; 1998 Dec 01; 81(12):3222-30. PubMed ID: 9891267
    [Abstract] [Full Text] [Related]

  • 17. Compositional mixed modeling of methane emissions and ruminal volatile fatty acids from individual cattle and multiple experiments.
    Palarea-Albaladejo J, Rooke JA, Nevison IM, Dewhurst RJ.
    J Anim Sci; 2017 Jun 01; 95(6):2467-2480. PubMed ID: 28727067
    [Abstract] [Full Text] [Related]

  • 18. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen.
    van Lingen HJ, Fadel JG, Moraes LE, Bannink A, Dijkstra J.
    J Theor Biol; 2019 Nov 07; 480():150-165. PubMed ID: 31401059
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.