These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 3121605
1. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes. Young JD, Mason DK, Fincham DA. J Biol Chem; 1988 Jan 05; 263(1):140-3. PubMed ID: 3121605 [Abstract] [Full Text] [Related]
2. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC. Fincham DA, Mason DK, Young JD. Biochim Biophys Acta; 1988 Jan 13; 937(1):184-94. PubMed ID: 3334844 [Abstract] [Full Text] [Related]
4. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Van Winkle LJ, Campione AL, Gorman JM. Biochim Biophys Acta; 1990 Jun 27; 1025(2):215-24. PubMed ID: 2114171 [Abstract] [Full Text] [Related]
5. Characterization of a novel variant of amino acid transport system asc in erythrocytes from Przewalski's horse (Equus przewalskii). Fincham DA, Ellory JC, Young JD. Can J Physiol Pharmacol; 1992 Aug 27; 70(8):1117-27. PubMed ID: 1473044 [Abstract] [Full Text] [Related]
9. Amino acid transport in human and in sheep erythrocytes. Young JD, Jones SE, Ellory JC. Proc R Soc Lond B Biol Sci; 1980 Sep 26; 209(1176):355-75. PubMed ID: 6109287 [Abstract] [Full Text] [Related]
10. Discrimination of Na+-independent transport systems L, T, and asc in erythrocytes. Na+ independence of the latter a consequence of cell maturation? Vadgama JV, Christensen HN. J Biol Chem; 1985 Mar 10; 260(5):2912-21. PubMed ID: 3919011 [Abstract] [Full Text] [Related]
11. Characterization of threonine transport into a kidney epithelial cell line (BSC-1). Evidence for the presence of Na(+)-independent system asc [corrected]. Kuhlmann MK, Vadgama JV. J Biol Chem; 1991 Aug 15; 266(23):15042-7. PubMed ID: 1907970 [Abstract] [Full Text] [Related]
13. Na-independent and Na-dependent transport of neutral amino acids in the human red blood cell. Rosenberg R. Acta Physiol Scand; 1982 Dec 15; 116(4):321-30. PubMed ID: 7170995 [Abstract] [Full Text] [Related]
14. Harmaline distribution in single muscle fibres and the inhibition of sodium efflux. Lea TJ, Ashley CC. Biochim Biophys Acta; 1981 Jun 09; 644(1):74-81. PubMed ID: 7260069 [Abstract] [Full Text] [Related]
16. Effect of harmaline on organic ion transport in rabbit renal cortical slices. Kim YK, Park YS, Lee SH. Arch Int Pharmacodyn Ther; 1988 Jun 09; 294():259-72. PubMed ID: 2852931 [Abstract] [Full Text] [Related]
17. L-alanine uptake by frog (Rana esculenta) red blood cells. Gallardo MA, Albi JL, Esteve M, Sánchez J. Comp Biochem Physiol A Physiol; 1997 Nov 09; 118(3):631-5. PubMed ID: 9406440 [Abstract] [Full Text] [Related]
18. The characterisation of two partially purified systems for Na+-dependent amino acid transport. Watts C, Wheeler KP. Biochim Biophys Acta; 1980 Nov 04; 602(2):446-59. PubMed ID: 7426656 [Abstract] [Full Text] [Related]
20. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. Angelo S, Devés R. J Membr Biol; 1994 Aug 04; 141(2):183-92. PubMed ID: 7807519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]