These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 31218950

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The ever unfolding story of cAMP signaling in trypanosomatids: vive la difference!
    Tagoe DN, Kalejaiye TD, de Koning HP.
    Front Pharmacol; 2015; 6():185. PubMed ID: 26441645
    [Abstract] [Full Text] [Related]

  • 3. Targeting calcium homeostasis as the therapy of Chagas' disease and leishmaniasis - a review.
    Benaim B, Garcia CR.
    Trop Biomed; 2011 Dec; 28(3):471-81. PubMed ID: 22433874
    [Abstract] [Full Text] [Related]

  • 4. The kinetoplastid chemotherapy revisited: current drugs, recent advances and future perspectives.
    Castillo E, Dea-Ayuela MA, Bolás-Fernández F, Rangel M, González-Rosende ME.
    Curr Med Chem; 2010 Dec; 17(33):4027-51. PubMed ID: 20939823
    [Abstract] [Full Text] [Related]

  • 5. Cyclic AMP signaling in trypanosomatids.
    Naula C, Seebeck T.
    Parasitol Today; 2000 Jan; 16(1):35-8. PubMed ID: 10637587
    [Abstract] [Full Text] [Related]

  • 6. Revisiting the dipeptidyl carboxypeptidase inhibitor captopril as a source of pan anti-trypanosomatid agents.
    Garsi JB, Hocine S, Hensienne R, Moitessier M, Denton H, Major LL, Smith TK, Hanessian S.
    Bioorg Med Chem Lett; 2024 Sep 15; 110():129883. PubMed ID: 39013490
    [Abstract] [Full Text] [Related]

  • 7. In vitro evaluation of arylsubstituted imidazoles derivatives as antiprotozoal agents and docking studies on sterol 14α-demethylase (CYP51) from Trypanosoma cruzi, Leishmania infantum, and Trypanosoma brucei.
    Rojas Vargas JA, López AG, Pérez Y, Cos P, Froeyen M.
    Parasitol Res; 2019 May 15; 118(5):1533-1548. PubMed ID: 30903349
    [Abstract] [Full Text] [Related]

  • 8. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases.
    Motta FN, Azevedo CDS, Neves BP, Araújo CN, Grellier P, Santana JM, Bastos IMD.
    Biochimie; 2019 Dec 15; 167():207-216. PubMed ID: 31628976
    [Abstract] [Full Text] [Related]

  • 9. Sterol 14alpha-demethylase (CYP51) as a therapeutic target for human trypanosomiasis and leishmaniasis.
    Lepesheva GI, Waterman MR.
    Curr Top Med Chem; 2011 Dec 15; 11(16):2060-71. PubMed ID: 21619513
    [Abstract] [Full Text] [Related]

  • 10. Molecular and biochemical studies on the hypoxanthine-guanine phosphoribosyltransferases of the pathogenic haemoflagellates.
    Ullman B, Carter D.
    Int J Parasitol; 1997 Feb 15; 27(2):203-13. PubMed ID: 9088991
    [Abstract] [Full Text] [Related]

  • 11. Anilinoquinoline based inhibitors of trypanosomatid proliferation.
    Ferrins L, Sharma A, Thomas SM, Mehta N, Erath J, Tanghe S, Leed SE, Rodriguez A, Mensa-Wilmot K, Sciotti RJ, Gillingwater K, Pollastri MP.
    PLoS Negl Trop Dis; 2018 Nov 15; 12(11):e0006834. PubMed ID: 30475800
    [Abstract] [Full Text] [Related]

  • 12. Pathways involved in environmental sensing in trypanosomatids.
    Parsons M, Ruben L.
    Parasitol Today; 2000 Feb 15; 16(2):56-62. PubMed ID: 10652488
    [Abstract] [Full Text] [Related]

  • 13. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi.
    Parsons M, Worthey EA, Ward PN, Mottram JC.
    BMC Genomics; 2005 Sep 15; 6():127. PubMed ID: 16164760
    [Abstract] [Full Text] [Related]

  • 14. Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition.
    Martín-Escolano R, Martín-Escolano J, Ballesteros-Garrido R, Cirauqui N, Abarca B, Rosales MJ, Sánchez-Moreno M, Ballesteros R, Marín C.
    Parasitol Res; 2020 Sep 15; 119(9):2943-2954. PubMed ID: 32607710
    [Abstract] [Full Text] [Related]

  • 15. cAMP signalling in trypanosomatids: role in pathogenesis and as a drug target.
    Makin L, Gluenz E.
    Trends Parasitol; 2015 Aug 15; 31(8):373-9. PubMed ID: 26004537
    [Abstract] [Full Text] [Related]

  • 16. Novel compounds to combat trypanosomatid infections: a medicinal chemical perspective.
    González M, Cerecetto H.
    Expert Opin Ther Pat; 2011 May 15; 21(5):699-715. PubMed ID: 21428846
    [Abstract] [Full Text] [Related]

  • 17. NADPH Producing Enzymes as Promising Drug Targets for Chagas Disease.
    Cordeiro AT.
    Curr Med Chem; 2019 May 15; 26(36):6564-6571. PubMed ID: 30306853
    [Abstract] [Full Text] [Related]

  • 18. The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum--new tools for designing specific inhibitors.
    Bahia D, Oliveira LM, Lima FM, Oliveira P, Silveira JF, Mortara RA, Ruiz JC.
    Biochem Biophys Res Commun; 2009 Dec 18; 390(3):963-70. PubMed ID: 19852933
    [Abstract] [Full Text] [Related]

  • 19. Toward the development of dual-targeted glyceraldehyde-3-phosphate dehydrogenase/trypanothione reductase inhibitors against Trypanosoma brucei and Trypanosoma cruzi.
    Belluti F, Uliassi E, Veronesi G, Bergamini C, Kaiser M, Brun R, Viola A, Fato R, Michels PA, Krauth-Siegel RL, Cavalli A, Bolognesi ML.
    ChemMedChem; 2014 Feb 18; 9(2):371-82. PubMed ID: 24403089
    [Abstract] [Full Text] [Related]

  • 20. cAMP signalling in the kinetoplastid protozoa.
    Seebeck T, Schaub R, Johner A.
    Curr Mol Med; 2004 Sep 18; 4(6):585-99. PubMed ID: 15357210
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.