These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 312211
1. Birefringence signals and tension development in single frog muscle fibres at short stimulus intervals. Oetliker H, Schümperli RA. Experientia; 1979 Apr 15; 35(4):496-8. PubMed ID: 312211 [Abstract] [Full Text] [Related]
2. Birefringence signal and early mechanical changes at normal and increased tonicities in frog skeletal muscle. Oetliker H, Schümperli RA. J Physiol; 1984 Aug 15; 353():287-304. PubMed ID: 6332898 [Abstract] [Full Text] [Related]
3. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres. Baylor SM, Hollingworth S, Marshall MW. J Physiol; 1989 Jan 15; 408():617-35. PubMed ID: 2476559 [Abstract] [Full Text] [Related]
4. Valinomycin and excitation-contraction coupling in skeletal muscle fibres of the frog. Pape PC, Konishi M, Baylor SM. J Physiol; 1992 Apr 15; 449():219-35. PubMed ID: 1326044 [Abstract] [Full Text] [Related]
5. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog. Kovács L, Schümperli RA, Szücs G. J Physiol; 1983 Aug 15; 341():579-93. PubMed ID: 6604807 [Abstract] [Full Text] [Related]
6. Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres. Baylor SM, Chandler WK, Marshall MW. J Physiol; 1982 Oct 15; 331():139-77. PubMed ID: 6984070 [Abstract] [Full Text] [Related]
7. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres. Irving M. J Physiol; 1993 Dec 15; 472():127-56. PubMed ID: 8145138 [Abstract] [Full Text] [Related]
8. Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Baylor SM, Oetliker H. Nature; 1975 Jan 10; 253(5487):97-101. PubMed ID: 1078600 [No Abstract] [Full Text] [Related]
9. Calcium transients in frog skeletal muscle fibres following conditioning stimuli. Miledi R, Parker I, Zhu PH. J Physiol; 1983 Jun 10; 339():223-42. PubMed ID: 6887023 [Abstract] [Full Text] [Related]
10. Voltage dependence of depolarization-contraction coupling processes in skeletal muscle cells. Lacinová L, Poledna J. Gen Physiol Biophys; 1990 Apr 10; 9(2):113-28. PubMed ID: 2358185 [Abstract] [Full Text] [Related]
11. A large birefringence signal preceding contraction in single twitch fibres of the frog. Baylor SM, Oetliker H. J Physiol; 1977 Jan 10; 264(1):141-62. PubMed ID: 300106 [Abstract] [Full Text] [Related]
12. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. Heinl P, Kuhn HJ, Rüegg JC. J Physiol; 1974 Mar 10; 237(2):243-58. PubMed ID: 4545181 [Abstract] [Full Text] [Related]
13. Simultaneous measurements of ionic currents, tension and optical properties of voltage clamped skeletal muscle fibres. Poledna J, Lacinová L. Gen Physiol Biophys; 1988 Feb 10; 7(1):17-28. PubMed ID: 2456248 [Abstract] [Full Text] [Related]
14. Calcium transients studied under voltage-clamp control in frog twitch muscle fibres. Miledi R, Parker I, Zhu PH. J Physiol; 1983 Jul 10; 340():649-80. PubMed ID: 6604154 [Abstract] [Full Text] [Related]
15. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Oetliker H, Baylor SM, Chandler WK. Nature; 1975 Oct 23; 257(5528):693-6. PubMed ID: 1081202 [No Abstract] [Full Text] [Related]
16. Birefringence signals from surface and t-system membranes of frog single muscle fibres. Baylor SM, Oetliker H. J Physiol; 1977 Jan 23; 264(1):199-213. PubMed ID: 300108 [Abstract] [Full Text] [Related]