These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
255 related items for PubMed ID: 31232451
1. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Zhang ZH, Zhou T, Tang TJ, Song HX, Guan CY, Huang JY, Hua YP. J Exp Bot; 2019 Oct 15; 70(19):5437-5455. PubMed ID: 31232451 [Abstract] [Full Text] [Related]
2. Integrated ionomic and transcriptomic dissection reveals the core transporter genes responsive to varying cadmium abundances in allotetraploid rapeseed. Zhou T, Yue CP, Zhang TY, Liu Y, Huang JY, Hua YP. BMC Plant Biol; 2021 Aug 13; 21(1):372. PubMed ID: 34388971 [Abstract] [Full Text] [Related]
4. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Zhang XD, Meng JG, Zhao KX, Chen X, Yang ZM. Biometals; 2018 Feb 13; 31(1):107-121. PubMed ID: 29250721 [Abstract] [Full Text] [Related]
5. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Wu X, Tian H, Li L, Guan C, Zhang Z. Environ Pollut; 2021 Sep 15; 285():117218. PubMed ID: 33933876 [Abstract] [Full Text] [Related]
6. NPs-Ca promotes Cd accumulation and enhances Cd tolerance of rapeseed shoots by affecting Cd transfer and Cd fixation in pectin. Zhu Z, Tian H, Tang X, Li J, Zhang Z, Chai G, Wu X. Chemosphere; 2023 Nov 15; 341():140001. PubMed ID: 37659510 [Abstract] [Full Text] [Related]
7. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J. Chemosphere; 2020 Jul 15; 250():126308. PubMed ID: 32135439 [Abstract] [Full Text] [Related]
8. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Cojocaru P, Gusiatin ZM, Cretescu I. Environ Sci Pollut Res Int; 2016 Jun 15; 23(11):10693-10701. PubMed ID: 26884243 [Abstract] [Full Text] [Related]
9. [Tolerance Mechanism and Cadmium Enrichment Abilities in Two Brassica napus L. Cultivars]. Bian JL, Guo JM, Wang XD, Yang JX, Yang J, Chen TB, Cao L, Cheng YX, Ren ZH, Wang J, Zhou XY. Huan Jing Ke Xue; 2020 Feb 08; 41(2):970-978. PubMed ID: 32608759 [Abstract] [Full Text] [Related]
10. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H. BMC Plant Biol; 2019 Dec 19; 19(1):570. PubMed ID: 31856702 [Abstract] [Full Text] [Related]
11. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). Zhang F, Xiao X, Wu X. Ecotoxicol Environ Saf; 2020 Jul 01; 197():110613. PubMed ID: 32304923 [Abstract] [Full Text] [Related]
12. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. J Hazard Mater; 2023 Sep 05; 457():131862. PubMed ID: 37329597 [Abstract] [Full Text] [Related]
13. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Hu C. Chemosphere; 2015 Jan 05; 119():1217-1223. PubMed ID: 25460764 [Abstract] [Full Text] [Related]
14. Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Wang B, Liu L, Gao Y, Chen J. Chemosphere; 2009 Mar 05; 74(10):1400-3. PubMed ID: 19108867 [Abstract] [Full Text] [Related]
15. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y, Jian H, Wang T, Di F, Wang J, Li J, Liu L. Environ Sci Pollut Res Int; 2018 Nov 05; 25(32):32433-32446. PubMed ID: 30232771 [Abstract] [Full Text] [Related]
16. Multiomics reveals an essential role of long-distance translocation in regulating plant cadmium resistance and grain accumulation in allohexaploid wheat (Triticum aestivum). Hua YP, Chen JF, Zhou T, Zhang TY, Shen DD, Feng YN, Guan PF, Huang SM, Zhou ZF, Huang JY, Yue CP. J Exp Bot; 2022 Dec 08; 73(22):7516-7537. PubMed ID: 36063365 [Abstract] [Full Text] [Related]
17. Ultrasonic seed treatment improved cadmium (Cd) tolerance in Brassica napus L. Rao G, Huang S, Ashraf U, Mo Z, Duan M, Pan S, Tang X. Ecotoxicol Environ Saf; 2019 Dec 15; 185():109659. PubMed ID: 31541946 [Abstract] [Full Text] [Related]
18. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Pan F, Meng Q, Luo S, Shen J, Chen B, Khan KY, Japenga J, Ma X, Yang X, Feng Y. Int J Phytoremediation; 2017 Mar 04; 19(3):281-289. PubMed ID: 27593491 [Abstract] [Full Text] [Related]
19. Comparative transcriptomics analysis reveals differential Cd response processes in roots of two turnip landraces with different Cd accumulation capacities. Li X, Chen D, Yang Y, Liu Y, Luo L, Chen Q, Yang Y. Ecotoxicol Environ Saf; 2021 Sep 01; 220():112392. PubMed ID: 34102395 [Abstract] [Full Text] [Related]
20. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M. Ecotoxicol Environ Saf; 2014 Aug 01; 106():164-72. PubMed ID: 24840879 [Abstract] [Full Text] [Related] Page: [Next] [New Search]