These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 31243332

  • 1. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI.
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [Abstract] [Full Text] [Related]

  • 2. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield.
    Li Q, Ma Z, Huo J, Zhang X, Wang R, Zhang S, Jiao J, Dong X, Janssen PH, Ungerfeld EM, Greening C, Tan Z, Wang M.
    ISME J; 2024 Jan 08; 18(1):. PubMed ID: 38365243
    [Abstract] [Full Text] [Related]

  • 3. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants.
    Li QS, Wang R, Ma ZY, Zhang XM, Jiao JZ, Zhang ZG, Ungerfeld EM, Yi KL, Zhang BZ, Long L, Long Y, Tao Y, Huang T, Greening C, Tan ZL, Wang M.
    ISME J; 2022 Nov 08; 16(11):2535-2546. PubMed ID: 35931768
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Rumen Lachnospiraceae isolate NK3A20 exhibits metabolic flexibility in response to substrate and coculture with a methanogen.
    Kaminsky RA, Reid PM, Altermann E, Kenters N, Kelly WJ, Noel SJ, Attwood GT, Janssen PH.
    Appl Environ Microbiol; 2023 Oct 31; 89(10):e0063423. PubMed ID: 37800930
    [Abstract] [Full Text] [Related]

  • 8. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.
    Lan W, Yang C.
    Sci Total Environ; 2019 Mar 01; 654():1270-1283. PubMed ID: 30841400
    [Abstract] [Full Text] [Related]

  • 9. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
    Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT.
    PLoS One; 2010 Jan 28; 5(1):e8926. PubMed ID: 20126622
    [Abstract] [Full Text] [Related]

  • 10. Microbiome-informed study of the mechanistic basis of methane inhibition by Asparagopsis taxiformis in dairy cattle.
    Indugu N, Narayan K, Stefenoni HA, Hennessy ML, Vecchiarelli B, Bender JS, Shah R, Dai G, Garapati S, Yarish C, Welchez SC, Räisänen SE, Wasson D, Lage C, Melgar A, Hristov AN, Pitta DW.
    mBio; 2024 Aug 14; 15(8):e0078224. PubMed ID: 38953639
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos.
    Aguilar-Marin SB, Betancur-Murillo CL, Isaza GA, Mesa H, Jovel J.
    BMC Microbiol; 2020 Nov 27; 20(1):364. PubMed ID: 33246412
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM, Medrano RF, Wang M, Beauchemin KA, Ma ZY, Wang R, Wen JN, Lukuyu BA, Tan ZL, He JH.
    J Anim Sci; 2019 Dec 17; 97(12):4999-5008. PubMed ID: 31740932
    [Abstract] [Full Text] [Related]

  • 17. Microbial ecosystem and methanogenesis in ruminants.
    Morgavi DP, Forano E, Martin C, Newbold CJ.
    Animal; 2010 Jul 17; 4(7):1024-36. PubMed ID: 22444607
    [Abstract] [Full Text] [Related]

  • 18. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae.
    Chaucheyras F, Fonty G, Bertin G, Gouet P.
    Appl Environ Microbiol; 1995 Sep 17; 61(9):3466-7. PubMed ID: 7574654
    [Abstract] [Full Text] [Related]

  • 19. Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets.
    Chong L, Zhuping Z, Tongjun G, Yongming L, Hongmin D.
    J Basic Microbiol; 2014 Jun 17; 54(6):521-30. PubMed ID: 23696266
    [Abstract] [Full Text] [Related]

  • 20. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.
    Kamke J, Soni P, Li Y, Ganesh S, Kelly WJ, Leahy SC, Shi W, Froula J, Rubin EM, Attwood GT.
    BMC Res Notes; 2017 Aug 08; 10(1):367. PubMed ID: 28789673
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.