These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 31243960
1. Identification of C-β-d-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies. Barr D, Szennyes E, Bokor É, Al-Oanzi ZH, Moffatt C, Kun S, Docsa T, Sipos Á, Davies MP, Mathomes RT, Snape TJ, Agius L, Somsák L, Hayes JM. ACS Chem Biol; 2019 Jul 19; 14(7):1460-1470. PubMed ID: 31243960 [Abstract] [Full Text] [Related]
2. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors. Kun S, Begum J, Kyriakis E, Stamati ECV, Barkas TA, Szennyes E, Bokor É, Szabó KE, Stravodimos GA, Sipos Á, Docsa T, Gergely P, Moffatt C, Patraskaki MS, Kokolaki MC, Gkerdi A, Skamnaki VT, Leonidas DD, Somsák L, Hayes JM. Eur J Med Chem; 2018 Mar 10; 147():266-278. PubMed ID: 29453094 [Abstract] [Full Text] [Related]
3. Design and Synthesis of 3-(β-d-Glucopyranosyl)-4-amino/4-guanidino Pyrazole Derivatives and Analysis of Their Glycogen Phosphorylase Inhibitory Potential. Kun S, Mathomes RT, Docsa T, Somsák L, Hayes JM. Molecules; 2023 Mar 28; 28(7):. PubMed ID: 37049768 [Abstract] [Full Text] [Related]
4. Synthesis, In Silico and Kinetics Evaluation of N-(β-d-glucopyranosyl)-2-arylimidazole-4(5)-carboxamides and N-(β-d-glucopyranosyl)-4(5)-arylimidazole-2-carboxamides as Glycogen Phosphorylase Inhibitors. Homolya L, Mathomes RT, Varga L, Docsa T, Juhász L, Hayes JM, Somsák L. Int J Mol Sci; 2024 Apr 23; 25(9):. PubMed ID: 38731811 [Abstract] [Full Text] [Related]
5. Synthetic, enzyme kinetic, and protein crystallographic studies of C-β-d-glucopyranosyl pyrroles and imidazoles reveal and explain low nanomolar inhibition of human liver glycogen phosphorylase. Kantsadi AL, Bokor É, Kun S, Stravodimos GA, Chatzileontiadou DSM, Leonidas DD, Juhász-Tóth É, Szakács A, Batta G, Docsa T, Gergely P, Somsák L. Eur J Med Chem; 2016 Nov 10; 123():737-745. PubMed ID: 27522507 [Abstract] [Full Text] [Related]
6. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol. Tsitsanou KE, Hayes JM, Keramioti M, Mamais M, Oikonomakos NG, Kato A, Leonidas DD, Zographos SE. Food Chem Toxicol; 2013 Nov 10; 61():14-27. PubMed ID: 23279842 [Abstract] [Full Text] [Related]
7. Synthesis, enzyme kinetics and computational evaluation of N-(β-D-glucopyranosyl) oxadiazolecarboxamides as glycogen phosphorylase inhibitors. Polyák M, Varga G, Szilágyi B, Juhász L, Docsa T, Gergely P, Begum J, Hayes JM, Somsák L. Bioorg Med Chem; 2013 Sep 15; 21(18):5738-47. PubMed ID: 23938052 [Abstract] [Full Text] [Related]
8. New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase. Kun S, Bokor É, Varga G, Szőcs B, Páhi A, Czifrák K, Tóth M, Juhász L, Docsa T, Gergely P, Somsák L. Eur J Med Chem; 2014 Apr 09; 76():567-79. PubMed ID: 24608000 [Abstract] [Full Text] [Related]
9. Synthesis of C-β-d-glucopyranosyl derivatives of some fused azoles for the inhibition of glycogen phosphorylase. Szennyes E, Bokor É, Docsa T, Sipos Á, Somsák L. Carbohydr Res; 2019 Jan 15; 472():33-41. PubMed ID: 30453096 [Abstract] [Full Text] [Related]
10. Probing the β-pocket of the active site of human liver glycogen phosphorylase with 3-(C-β-d-glucopyranosyl)-5-(4-substituted-phenyl)-1, 2, 4-triazole inhibitors. Kyriakis E, Solovou TGA, Kun S, Czifrák K, Szőcs B, Juhász L, Bokor É, Stravodimos GA, Kantsadi AL, Chatzileontiadou DSM, Skamnaki VT, Somsák L, Leonidas DD. Bioorg Chem; 2018 Apr 15; 77():485-493. PubMed ID: 29454281 [Abstract] [Full Text] [Related]
11. The σ-hole phenomenon of halogen atoms forms the structural basis of the strong inhibitory potency of C5 halogen substituted glucopyranosyl nucleosides towards glycogen phosphorylase b. Kantsadi AL, Hayes JM, Manta S, Skamnaki VT, Kiritsis C, Psarra AM, Koutsogiannis Z, Dimopoulou A, Theofanous S, Nikoleousakos N, Zoumpoulakis P, Kontou M, Papadopoulos G, Zographos SE, Komiotis D, Leonidas DD. ChemMedChem; 2012 Apr 15; 7(4):722-32. PubMed ID: 22267166 [Abstract] [Full Text] [Related]
12. Synthesis of New C- and N-β-d-Glucopyranosyl Derivatives of Imidazole, 1,2,3-Triazole and Tetrazole, and Their Evaluation as Inhibitors of Glycogen Phosphorylase. Kun S, Bokor É, Sipos Á, Docsa T, Somsák L. Molecules; 2018 Mar 15; 23(3):. PubMed ID: 29543771 [Abstract] [Full Text] [Related]
13. Synthetic flavonoid derivatives targeting the glycogen phosphorylase inhibitor site: QM/MM-PBSA motivated synthesis of substituted 5,7-dihydroxyflavones, crystallography, in vitro kinetics and ex-vivo cellular experiments reveal novel potent inhibitors. Chetter BA, Kyriakis E, Barr D, Karra AG, Katsidou E, Koulas SM, Skamnaki VT, Snape TJ, Psarra AG, Leonidas DD, Hayes JM. Bioorg Chem; 2020 Sep 15; 102():104003. PubMed ID: 32771768 [Abstract] [Full Text] [Related]
14. Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-glucopyranosyl urea binding. Alexacou KM, Hayes JM, Tiraidis C, Zographos SE, Leonidas DD, Chrysina ED, Archontis G, Oikonomakos NG, Paul JV, Varghese B, Loganathan D. Proteins; 2008 May 15; 71(3):1307-23. PubMed ID: 18041758 [Abstract] [Full Text] [Related]
15. The effect of glucose on the potency of two distinct glycogen phosphorylase inhibitors. Andersen B, Westergaard N. Biochem J; 2002 Oct 15; 367(Pt 2):443-50. PubMed ID: 12099891 [Abstract] [Full Text] [Related]
16. 1-(3-Deoxy-3-fluoro-beta-d-glucopyranosyl) pyrimidine derivatives as inhibitors of glycogen phosphorylase b: Kinetic, crystallographic and modelling studies. Tsirkone VG, Tsoukala E, Lamprakis C, Manta S, Hayes JM, Skamnaki VT, Drakou C, Zographos SE, Komiotis D, Leonidas DD. Bioorg Med Chem; 2010 May 15; 18(10):3413-25. PubMed ID: 20430629 [Abstract] [Full Text] [Related]
17. Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase. Kato A, Nasu N, Takebayashi K, Adachi I, Minami Y, Sanae F, Asano N, Watson AA, Nash RJ. J Agric Food Chem; 2008 Jun 25; 56(12):4469-73. PubMed ID: 18494482 [Abstract] [Full Text] [Related]
18. Halogen-substituted (C-β-D-glucopyranosyl)-hydroquinone regioisomers: synthesis, enzymatic evaluation and their binding to glycogen phosphorylase. Alexacou KM, Zhang YZ, Praly JP, Zographos SE, Chrysina ED, Oikonomakos NG, Leonidas DD. Bioorg Med Chem; 2011 Sep 01; 19(17):5125-36. PubMed ID: 21821421 [Abstract] [Full Text] [Related]
19. Iminosugars as potential inhibitors of glycogenolysis: structural insights into the molecular basis of glycogen phosphorylase inhibition. Oikonomakos NG, Tiraidis C, Leonidas DD, Zographos SE, Kristiansen M, Jessen CU, Nørskov-Lauritsen L, Agius L. J Med Chem; 2006 Sep 21; 49(19):5687-701. PubMed ID: 16970395 [Abstract] [Full Text] [Related]
20. Glycogen phosphorylase as a target for type 2 diabetes: synthetic, biochemical, structural and computational evaluation of novel N-acyl-N´-(β-D-glucopyranosyl) urea inhibitors. Kantsadi AL, Parmenopoulou V, Bakalov DN, Snelgrove L, Stravodimos GA, Chatzileontiadou DS, Manta S, Panagiotopoulou A, Hayes JM, Komiotis D, Leonidas DD. Curr Top Med Chem; 2015 Sep 21; 15(23):2373-89. PubMed ID: 26088352 [Abstract] [Full Text] [Related] Page: [Next] [New Search]