These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 31252232

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. An approach to optimize the location of LNAPL recovery wells using the concept of a LNAPL specific yield.
    Ebrahimi F, Lenhard RJ, Nakhaei M, Nassery HR.
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):28714-28724. PubMed ID: 31376125
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Sustainability assessment of electrokinetic bioremediation compared with alternative remediation options for a petroleum release site.
    Gill RT, Thornton SF, Harbottle MJ, Smith JW.
    J Environ Manage; 2016 Dec 15; 184(Pt 1):120-131. PubMed ID: 27511828
    [Abstract] [Full Text] [Related]

  • 8. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P, Kostarelos K, Lenschow S, Christensen A, de Blanc PC.
    J Contam Hydrol; 2020 Mar 15; 230():103602. PubMed ID: 32005455
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
    Kim J, Corapcioglu MY.
    J Contam Hydrol; 2003 Aug 15; 65(1-2):137-58. PubMed ID: 12855205
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater.
    Wei KH, Ma J, Xi BD, Yu MD, Cui J, Chen BL, Li Y, Gu QB, He XS.
    J Hazard Mater; 2022 Jun 15; 432():128738. PubMed ID: 35338938
    [Abstract] [Full Text] [Related]

  • 15. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
    Gidarakos E, Aivalioti M.
    J Hazard Mater; 2007 Nov 19; 149(3):574-81. PubMed ID: 17709182
    [Abstract] [Full Text] [Related]

  • 16. LNAPL source zone delineation using soil gases in a heterogeneous silty-sand aquifer.
    Cohen GJV, Jousse F, Luze N, Höhener P, Atteia O.
    J Contam Hydrol; 2016 Sep 19; 192():20-34. PubMed ID: 27341018
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of factors causing lateral migration of light non-aqueous phase liquids (LNAPLs) in onshore oil spill accidents.
    Waqar A.
    Environ Sci Pollut Res Int; 2024 Feb 19; 31(7):10853-10873. PubMed ID: 38214856
    [Abstract] [Full Text] [Related]

  • 18. Pump-and-treat (P&T) vs groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation?
    Ciampi P, Esposito C, Bartsch E, Alesi EJ, Petrangeli Papini M.
    Environ Res; 2023 Oct 01; 234():116538. PubMed ID: 37399987
    [Abstract] [Full Text] [Related]

  • 19. Performance of air sparging systems: a review of case studies.
    Bass DH, Hastings NA, Brown RA.
    J Hazard Mater; 2000 Feb 25; 72(2-3):101-19. PubMed ID: 10650186
    [Abstract] [Full Text] [Related]

  • 20. Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system.
    Ponsin V, Maier J, Guelorget Y, Hunkeler D, Bouchard D, Villavicencio H, Höhener P.
    Sci Total Environ; 2015 Apr 15; 512-513():62-73. PubMed ID: 25617779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.