These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 31255914

  • 1. Tyrosine-phosphorylated SOCS3 negatively regulates cellular transformation mediated by the myeloproliferative neoplasm-associated JAK2 V617F mutant.
    Funakoshi-Tago M, Tsuruya R, Ueda F, Ishihara A, Kasahara T, Tamura H, Tago K.
    Cytokine; 2019 Nov; 123():154753. PubMed ID: 31255914
    [Abstract] [Full Text] [Related]

  • 2. Three Tyrosine Residues in the Erythropoietin Receptor Are Essential for Janus Kinase 2 V617F Mutant-induced Tumorigenesis.
    Ueda F, Tago K, Tamura H, Funakoshi-Tago M.
    J Biol Chem; 2017 Feb 03; 292(5):1826-1846. PubMed ID: 27998978
    [Abstract] [Full Text] [Related]

  • 3. Phosphorylated CIS suppresses the Epo or JAK2 V617F mutant-triggered cell proliferation through binding to EpoR.
    Funakoshi-Tago M, Moriwaki T, Ueda F, Tamura H, Kasahara T, Tago K.
    Cell Signal; 2017 Feb 03; 31():41-57. PubMed ID: 28038963
    [Abstract] [Full Text] [Related]

  • 4. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant.
    Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T.
    J Biol Chem; 2010 Feb 19; 285(8):5296-307. PubMed ID: 20028972
    [Abstract] [Full Text] [Related]

  • 5. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3.
    Hookham MB, Elliott J, Suessmuth Y, Staerk J, Ward AC, Vainchenker W, Percy MJ, McMullin MF, Constantinescu SN, Johnston JA.
    Blood; 2007 Jun 01; 109(11):4924-9. PubMed ID: 17317861
    [Abstract] [Full Text] [Related]

  • 6. Akt activation through the phosphorylation of erythropoietin receptor at tyrosine 479 is required for myeloproliferative disorder-associated JAK2 V617F mutant-induced cellular transformation.
    Kamishimoto J, Tago K, Kasahara T, Funakoshi-Tago M.
    Cell Signal; 2011 May 01; 23(5):849-56. PubMed ID: 21255641
    [Abstract] [Full Text] [Related]

  • 7. Oncogenic JAK2V617F causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms.
    Prestipino A, Emhardt AJ, Aumann K, O'Sullivan D, Gorantla SP, Duquesne S, Melchinger W, Braun L, Vuckovic S, Boerries M, Busch H, Halbach S, Pennisi S, Poggio T, Apostolova P, Veratti P, Hettich M, Niedermann G, Bartholomä M, Shoumariyeh K, Jutzi JS, Wehrle J, Dierks C, Becker H, Schmitt-Graeff A, Follo M, Pfeifer D, Rohr J, Fuchs S, Ehl S, Hartl FA, Minguet S, Miething C, Heidel FH, Kröger N, Triviai I, Brummer T, Finke J, Illert AL, Ruggiero E, Bonini C, Duyster J, Pahl HL, Lane SW, Hill GR, Blazar BR, von Bubnoff N, Pearce EL, Zeiser R.
    Sci Transl Med; 2018 Feb 21; 10(429):. PubMed ID: 29467301
    [Abstract] [Full Text] [Related]

  • 8. [Analysis of oncogenic signaling pathway induced by a myeloproliferative neoplasm-associated Janus kinase 2 (JAK2) V617F mutant].
    Funakoshi-Tago M.
    Yakugaku Zasshi; 2012 Feb 21; 132(11):1267-72. PubMed ID: 23123718
    [Abstract] [Full Text] [Related]

  • 9. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.
    Winter PS, Sarosiek KA, Lin KH, Meggendorfer M, Schnittger S, Letai A, Wood KC.
    Sci Signal; 2014 Dec 23; 7(357):ra122. PubMed ID: 25538080
    [Abstract] [Full Text] [Related]

  • 10. The indispensable role of the RNA helicase DDX5 in tumorigenesis induced by the myeloproliferative neoplasm-associated JAK2V617F mutant.
    Takeda K, Tago K, Funakoshi-Tago M.
    Cell Signal; 2023 Feb 23; 102():110537. PubMed ID: 36442590
    [Abstract] [Full Text] [Related]

  • 11. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms.
    Hoermann G, Cerny-Reiterer S, Herrmann H, Blatt K, Bilban M, Gisslinger H, Gisslinger B, Müllauer L, Kralovics R, Mannhalter C, Valent P, Mayerhofer M.
    FASEB J; 2012 Feb 23; 26(2):894-906. PubMed ID: 22051730
    [Abstract] [Full Text] [Related]

  • 12. SOCS3 tyrosine phosphorylation as a potential bio-marker for myeloproliferative neoplasms associated with mutant JAK2 kinases.
    Elliott J, Suessmuth Y, Scott LM, Nahlik K, McMullin MF, Constantinescu SN, Green AR, Johnston JA.
    Haematologica; 2009 Apr 23; 94(4):576-80. PubMed ID: 19229050
    [Abstract] [Full Text] [Related]

  • 13. Critical roles of Myc-ODC axis in the cellular transformation induced by myeloproliferative neoplasm-associated JAK2 V617F mutant.
    Funakoshi-Tago M, Sumi K, Kasahara T, Tago K.
    PLoS One; 2013 Apr 23; 8(1):e52844. PubMed ID: 23300995
    [Abstract] [Full Text] [Related]

  • 14. Fullerene derivative prevents cellular transformation induced by JAK2 V617F mutant through inhibiting c-Jun N-terminal kinase pathway.
    Funakoshi-Tago M, Nagata T, Tago K, Tsukada M, Tanaka K, Nakamura S, Mashino T, Kasahara T.
    Cell Signal; 2012 Nov 23; 24(11):2024-34. PubMed ID: 22750290
    [Abstract] [Full Text] [Related]

  • 15. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms.
    Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, Gao J, Schipma MJ, Wang Y, Thorsheim C, Zhao L, Stalker T, Stein B, Wen QJ, Crispino JD, Abrams CS, Ji P.
    J Clin Invest; 2018 Jan 02; 128(1):125-140. PubMed ID: 29202466
    [Abstract] [Full Text] [Related]

  • 16. Expression level and differential JAK2-V617F-binding of the adaptor protein Lnk regulates JAK2-mediated signals in myeloproliferative neoplasms.
    Baran-Marszak F, Magdoud H, Desterke C, Alvarado A, Roger C, Harel S, Mazoyer E, Cassinat B, Chevret S, Tonetti C, Giraudier S, Fenaux P, Cymbalista F, Varin-Blank N, Le Bousse-Kerdilès MC, Kiladjian JJ, Velazquez L.
    Blood; 2010 Dec 23; 116(26):5961-71. PubMed ID: 20870899
    [Abstract] [Full Text] [Related]

  • 17. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes.
    Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE, Walz C, Reiter A, Podar K, Royer Y, Constantinescu SN, Tomasson MH, Griffin JD, Gilliland DG, Sattler M.
    Blood; 2008 Apr 01; 111(7):3751-9. PubMed ID: 18216297
    [Abstract] [Full Text] [Related]

  • 18. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.
    Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, Geier F, Dirnhofer S, Guglielmelli P, Vannucchi AM, Feenstra JD, Kralovics R, Orkin SH, Skoda RC.
    J Exp Med; 2016 Jul 25; 213(8):1479-96. PubMed ID: 27401344
    [Abstract] [Full Text] [Related]

  • 19. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses.
    Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM.
    Biochem J; 2014 Mar 01; 458(2):395-405. PubMed ID: 24354892
    [Abstract] [Full Text] [Related]

  • 20. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms.
    Gao SM, Chen CQ, Wang LY, Hong LL, Wu JB, Dong PH, Yu FJ.
    Exp Hematol; 2013 Mar 01; 41(3):261-70.e4. PubMed ID: 23111066
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.