These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 31267721

  • 1. CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers improve pancreatic islet engraftment and survival in mouse.
    Citro A, Pellegrini S, Dugnani E, Eulberg D, Klussmann S, Piemonti L.
    Am J Transplant; 2019 Nov; 19(11):3131-3138. PubMed ID: 31267721
    [Abstract] [Full Text] [Related]

  • 2. Dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis.
    Devarapu SK, Kumar Vr S, Rupanagudi KV, Kulkarni OP, Eulberg D, Klussmann S, Anders HJ.
    Clin Immunol; 2016 Aug; 169():139-147. PubMed ID: 27392463
    [Abstract] [Full Text] [Related]

  • 3. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury.
    Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T, Trautwein C, Tacke F.
    Gut; 2012 Mar; 61(3):416-26. PubMed ID: 21813474
    [Abstract] [Full Text] [Related]

  • 4. Spiegelmer Inhibition of MCP-1/CCR2--Potential as an Adjunct Immunosuppressive Therapy in Transplantation.
    Kalnins A, Thomas MN, Andrassy M, Müller S, Wagner A, Pratschke S, Rentsch M, Klussmann S, Kauke T, Angele MK, Bazhin AV, Fischereder M, Werner J, Guba M, Andrassy J.
    Scand J Immunol; 2015 Aug; 82(2):102-9. PubMed ID: 25970072
    [Abstract] [Full Text] [Related]

  • 5. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3'PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice.
    Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D, Buchner K, Selve N, Klussmann S, Anders HJ.
    Am J Pathol; 2008 Mar; 172(3):628-37. PubMed ID: 18258851
    [Abstract] [Full Text] [Related]

  • 6. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease.
    Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C, Parente E, Vater A, Eulberg D, Klussmann S, Romagnani P, Anders HJ.
    Am J Pathol; 2011 Jul; 179(1):116-24. PubMed ID: 21703397
    [Abstract] [Full Text] [Related]

  • 7. Effect of nicotinamide on early graft failure following intraportal islet transplantation.
    Jung DY, Park JB, Joo SY, Joh JW, Kwon CH, Kwon GY, Kim SJ.
    Exp Mol Med; 2009 Nov 30; 41(11):782-92. PubMed ID: 19641379
    [Abstract] [Full Text] [Related]

  • 8. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice.
    Baeck C, Wei X, Bartneck M, Fech V, Heymann F, Gassler N, Hittatiya K, Eulberg D, Luedde T, Trautwein C, Tacke F.
    Hepatology; 2014 Mar 30; 59(3):1060-72. PubMed ID: 24481979
    [Abstract] [Full Text] [Related]

  • 9. Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death-1 ligand-1-dependent mechanism.
    Lee I, Wang L, Wells AD, Ye Q, Han R, Dorf ME, Kuziel WA, Rollins BJ, Chen L, Hancock WW.
    J Immunol; 2003 Dec 15; 171(12):6929-35. PubMed ID: 14662900
    [Abstract] [Full Text] [Related]

  • 10. Mesenchymal stromal cell secretory factors induce sustained improvements in islet function pre- and post-transplantation.
    Rackham CL, Amisten S, Persaud SJ, King AJF, Jones PM.
    Cytotherapy; 2018 Dec 15; 20(12):1427-1436. PubMed ID: 30377040
    [Abstract] [Full Text] [Related]

  • 11. Alginate-microencapsulation of human stem cell-derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression.
    Alagpulinsa DA, Cao JJL, Driscoll RK, Sîrbulescu RF, Penson MFE, Sremac M, Engquist EN, Brauns TA, Markmann JF, Melton DA, Poznansky MC.
    Am J Transplant; 2019 Jul 15; 19(7):1930-1940. PubMed ID: 30748094
    [Abstract] [Full Text] [Related]

  • 12. Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site.
    Komatsu H, Rawson J, Barriga A, Gonzalez N, Mendez D, Li J, Omori K, Kandeel F, Mullen Y.
    Am J Transplant; 2018 Apr 15; 18(4):832-842. PubMed ID: 28898528
    [Abstract] [Full Text] [Related]

  • 13. Mesenchymal stromal cell secretory molecules improve the functional survival of human islets.
    Hong TW, Caxaria S, Daniels Gatward LF, Hussain S, Zhao M, King AJF, Rackham CL, Jones PM.
    Diabet Med; 2023 Dec 15; 40(12):e15227. PubMed ID: 37728506
    [Abstract] [Full Text] [Related]

  • 14. Role of donor-derived monocyte chemoattractant protein-1 in murine islet transplantation.
    Schröppel B, Zhang N, Chen P, Chen D, Bromberg JS, Murphy B.
    J Am Soc Nephrol; 2005 Feb 15; 16(2):444-51. PubMed ID: 15601743
    [Abstract] [Full Text] [Related]

  • 15. Targeting the CXCR4-CXCL12 axis mobilizes autologous hematopoietic stem cells and prolongs islet allograft survival via programmed death ligand 1.
    Fiorina P, Jurewicz M, Vergani A, Petrelli A, Carvello M, D'Addio F, Godwin JG, Law K, Wu E, Tian Z, Thoma G, Kovarik J, La Rosa S, Capella C, Rodig S, Zerwes HG, Sayegh MH, Abdi R.
    J Immunol; 2011 Jan 01; 186(1):121-31. PubMed ID: 21131428
    [Abstract] [Full Text] [Related]

  • 16. SOCS3 inhibits the mesenchymal stromal cell secretory factor SDF-1-mediated improvement of islet function in non-obese diabetic mice.
    Sui M, Li T, Lu H, Li Y, Huang J, Zhang P, Wang S, Zeng L.
    Stem Cell Res Ther; 2023 Jul 03; 14(1):172. PubMed ID: 37400916
    [Abstract] [Full Text] [Related]

  • 17. Reprint of "Dual blockade of the pro-inflammatory chemokine CCL2 and the homeostatic chemokine CXCL12 is as effective as high dose cyclophosphamide in murine proliferative lupus nephritis".
    Devarapu SK, Kumar Vr S, Rupanagudi KV, Kulkarni OP, Eulberg D, Klussmann S, Anders HJ.
    Clin Immunol; 2017 Dec 03; 185():119-127. PubMed ID: 29111236
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes.
    Rios PD, Skoumal M, Liu J, Youngblood R, Kniazeva E, Garcia AJ, Shea LD.
    Biotechnol Bioeng; 2018 Sep 03; 115(9):2356-2364. PubMed ID: 29873059
    [Abstract] [Full Text] [Related]

  • 19. Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue-derived mesenchymal stromal cells.
    Navaei-Nigjeh M, Moloudizargari M, Baeeri M, Gholami M, Lotfibakhshaiesh N, Soleimani M, Vasheghani-Farahani E, Ai J, Abdollahi M.
    Cytotherapy; 2018 Sep 03; 20(9):1124-1142. PubMed ID: 30068495
    [Abstract] [Full Text] [Related]

  • 20. Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site.
    Weaver JD, Headen DM, Coronel MM, Hunckler MD, Shirwan H, García AJ.
    Am J Transplant; 2019 May 03; 19(5):1315-1327. PubMed ID: 30378751
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.