These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 31270630
1. Exonuclease III-assisted fluorometric aptasensor for the carcinoembryonic antigen using graphene oxide and 2-aminopurine. Chen M, Ma C, Zhao H, Yan Y. Mikrochim Acta; 2019 Jul 03; 186(8):500. PubMed ID: 31270630 [Abstract] [Full Text] [Related]
2. A label-free electrochemical magnetic aptasensor based on exonuclease III-assisted signal amplification for determination of carcinoembryonic antigen. Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X. Mikrochim Acta; 2020 Aug 08; 187(9):492. PubMed ID: 32770422 [Abstract] [Full Text] [Related]
3. A fluorescent aptasensor based on single oligonucleotide-mediated isothermal quadratic amplification and graphene oxide fluorescence quenching for ultrasensitive protein detection. Xu J, Shi M, Huang H, Hu K, Chen W, Huang Y, Zhao S. Analyst; 2018 Aug 06; 143(16):3918-3925. PubMed ID: 30043777 [Abstract] [Full Text] [Related]
4. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Liu M, Li X, Li B, Du J, Yang Z. Mikrochim Acta; 2019 Dec 14; 187(1):46. PubMed ID: 31838593 [Abstract] [Full Text] [Related]
5. Ratiometric electrochemical aptasensor for the sensitive detection of carcinoembryonic antigen based on a hairpin DNA probe and exonuclease I-assisted target recycling. Ma H, Wang P, Xie Y, Liu J, Feng W, Li S. Anal Biochem; 2022 Jul 15; 649():114694. PubMed ID: 35483418 [Abstract] [Full Text] [Related]
6. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction. Ning Y, Hu J, Wei K, He G, Wu T, Lu F. Mikrochim Acta; 2019 Mar 05; 186(4):216. PubMed ID: 30838468 [Abstract] [Full Text] [Related]
7. An electrochemical aptasensor for highly sensitive detection of CEA based on exonuclease III and hybrid chain reaction dual signal amplification. Niu C, Lin X, Jiang X, Guo F, Liu J, Liu X, Huang H, Huang Y. Bioelectrochemistry; 2022 Feb 05; 143():107986. PubMed ID: 34735912 [Abstract] [Full Text] [Related]
8. An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Xu J, Chen W, Shi M, Huang Y, Fang L, Zhao S, Yao L, Liang H. Mikrochim Acta; 2019 Feb 22; 186(3):204. PubMed ID: 30796534 [Abstract] [Full Text] [Related]
9. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Xing XJ, Xiao WL, Liu XG, Zhou Y, Pang DW, Tang HW. Biosens Bioelectron; 2016 Apr 15; 78():431-437. PubMed ID: 26655184 [Abstract] [Full Text] [Related]
10. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Wang Y, Wei Z, Luo X, Wan Q, Qiu R, Wang S. Talanta; 2019 Apr 01; 195():33-39. PubMed ID: 30625551 [Abstract] [Full Text] [Related]
11. Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification. Li M, Xu X, Cai Q, Luo X, Zhou Z, Xu G, Xie Y. Mikrochim Acta; 2019 Jul 13; 186(8):531. PubMed ID: 31302786 [Abstract] [Full Text] [Related]
12. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range. Wei Y, Chen Y, Li H, Shuang S, Dong C, Wang G. Biosens Bioelectron; 2015 Jan 15; 63():311-316. PubMed ID: 25113049 [Abstract] [Full Text] [Related]
13. Triblock polyadenine-based electrochemical aptasensor for ultra-sensitive detection of carcinoembryonic antigen via exonuclease III-assisted target recycling and hybridization chain reaction. Huang S, Wang Y, Liu S, Li H, Yang M, Fang Y, Xiao Q. Bioelectrochemistry; 2024 Oct 15; 159():108749. PubMed ID: 38823375 [Abstract] [Full Text] [Related]
14. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M. Mikrochim Acta; 2017 Dec 18; 185(1):61. PubMed ID: 29594712 [Abstract] [Full Text] [Related]
15. A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B. Mikrochim Acta; 2019 Jun 26; 186(7):473. PubMed ID: 31243610 [Abstract] [Full Text] [Related]
16. Aptasensor based on tripetalous cadmium sulfide-graphene electrochemiluminescence for the detection of carcinoembryonic antigen. Shi GF, Cao JT, Zhang JJ, Huang KJ, Liu YM, Chen YH, Ren SW. Analyst; 2014 Nov 21; 139(22):5827-34. PubMed ID: 25209409 [Abstract] [Full Text] [Related]
17. Fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite. Mazloum-Ardakani M, Tavakolian-Ardakani Z, Sahraei N, Moshtaghioun SM. Biosens Bioelectron; 2019 Mar 15; 129():1-6. PubMed ID: 30677696 [Abstract] [Full Text] [Related]
18. A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Huang JY, Zhao L, Lei W, Wen W, Wang YJ, Bao T, Xiong HY, Zhang XH, Wang SF. Biosens Bioelectron; 2018 Jan 15; 99():28-33. PubMed ID: 28735043 [Abstract] [Full Text] [Related]