These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
189 related items for PubMed ID: 31270630
21. Capillary electrophoresis-chemiluminescence detection for carcino-embryonic antigen based on aptamer/graphene oxide structure. Zhou ZM, Feng Z, Zhou J, Fang BY, Qi XX, Ma ZY, Liu B, Zhao YD, Hu XB. Biosens Bioelectron; 2015 Feb 15; 64():493-8. PubMed ID: 25299985 [Abstract] [Full Text] [Related]
22. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Hu P, Zhu C, Jin L, Dong S. Biosens Bioelectron; 2012 Apr 15; 34(1):83-7. PubMed ID: 22382074 [Abstract] [Full Text] [Related]
23. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification. Huang KJ, Shuai HL, Zhang JZ. Biosens Bioelectron; 2016 Mar 15; 77():69-75. PubMed ID: 26386905 [Abstract] [Full Text] [Related]
24. Construction of electrochemical aptasensor of carcinoembryonic antigen based on toehold-aided DNA recycling signal amplification. Zhang R, Liu L, Mao D, Luo D, Cao F, Chen Q, Chen J. Bioelectrochemistry; 2020 Jun 15; 133():107492. PubMed ID: 32120323 [Abstract] [Full Text] [Related]
25. Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Luo J, Shen X, Li B, Li X, Zhou X. Mikrochim Acta; 2018 Jul 28; 185(8):392. PubMed ID: 30056590 [Abstract] [Full Text] [Related]
26. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification. Ma C, Wu K, Zhao H, Liu H, Wang K, Xia K. Mikrochim Acta; 2018 Jun 30; 185(7):347. PubMed ID: 29961128 [Abstract] [Full Text] [Related]
27. A novel ratiometric electrochemical aptasensor for highly sensitive detection of carcinoembryonic antigen. Wang P, Xie Y, Ma H, Liu J, Liu C, Feng W, Xi S. Anal Biochem; 2022 Dec 15; 659():114957. PubMed ID: 36265690 [Abstract] [Full Text] [Related]
28. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin. Lan Y, Qin G, Wei Y, Wang L, Dong C. Ecotoxicol Environ Saf; 2020 May 15; 194():110417. PubMed ID: 32171958 [Abstract] [Full Text] [Related]
29. Graphene oxide and enzyme-assisted dual-cycling amplification method for sensitive fluorometric determination of DNA. Iwe I, Li Z, Huang J. Mikrochim Acta; 2019 Oct 25; 186(11):716. PubMed ID: 31654133 [Abstract] [Full Text] [Related]
30. A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Yang W, Zhou X, Zhao J, Xu W. Mikrochim Acta; 2018 Jan 10; 185(2):100. PubMed ID: 29594400 [Abstract] [Full Text] [Related]
31. Novel 3D Printed Device for Dual-Signaling Ratiometric Photoelectrochemical Readout of Biomarker Using λ-Exonuclease-Assisted Recycling Amplification. Zhang K, Lv S, Tang D. Anal Chem; 2019 Aug 06; 91(15):10049-10055. PubMed ID: 31256583 [Abstract] [Full Text] [Related]
32. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Wang C, Tan R, Li J, Zhang Z. Anal Bioanal Chem; 2019 Apr 06; 411(11):2405-2414. PubMed ID: 30828760 [Abstract] [Full Text] [Related]
33. An ultrasensitive carcinoembryonic antigen electrochemical aptasensor based on 3D DNA nanoprobe and Exo III. Ji Y, Guo J, Ye B, Peng G, Zhang C, Zou L. Biosens Bioelectron; 2022 Jan 15; 196():113741. PubMed ID: 34736103 [Abstract] [Full Text] [Related]
34. Fluorescent aptasensors for sensitive detection of lead ions based on structure-switching DNA beacon probe and exonuclease I-mediated signal amplification. Su R, Li Z, Yang C, Li Y, Wang J, Sun C. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov 05; 320():124643. PubMed ID: 38901233 [Abstract] [Full Text] [Related]
35. A quencher-free 2-aminopurine modified hairpin aptasensor for ultrasensitive detection of Ochratoxin A. He Y, Yu Y, Wen X, Shi Y, Wu J, Guan Z, Cui M, Xiao C. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar 05; 228():117780. PubMed ID: 31753651 [Abstract] [Full Text] [Related]
36. A graphene-oxide-based aptasensor for fluorometric determination of chloramphenicol in milk and honey samples utilizing exonuclease III-assisted target recycling and Nb.BbvCI-powered DNA walker cascade amplification. Ning Y, Wang X, Liu S, Li L, Lu F. Ecotoxicol Environ Saf; 2023 Jan 01; 249():114449. PubMed ID: 38321668 [Abstract] [Full Text] [Related]
37. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z. Mikrochim Acta; 2017 Dec 06; 185(1):27. PubMed ID: 29594393 [Abstract] [Full Text] [Related]
38. Fluorometric determination of cardiac myoglobin based on energy transfer from a pyrene-labeled aptamer to graphene oxide. Liu D, Zeng Y, Zhou G, Lu X, Miao D, Yang Y, Zhai Y, Zhang J, Zhang Z, Wang H, Li L. Mikrochim Acta; 2019 Apr 15; 186(5):287. PubMed ID: 30989406 [Abstract] [Full Text] [Related]
39. Novel detection platform for insulin based on dual-cycle signal amplification by Exonuclease III. Liu C, Han J, Zhang J, Du J. Talanta; 2019 Jul 01; 199():596-602. PubMed ID: 30952303 [Abstract] [Full Text] [Related]
40. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X. Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]