These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1812 related items for PubMed ID: 31271883
1. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S, Ramos R, Alexis Chando P, Zhou L, Reeser K, Jin S, Soman P, Ye K. Acta Biomater; 2019 Sep 01; 95():152-164. PubMed ID: 31271883 [Abstract] [Full Text] [Related]
2. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT, Raju R, Kumar S, Geevarghese R, Nair RP, Kasoju N, Bhatt A. Int J Biol Macromol; 2021 Oct 31; 189():398-409. PubMed ID: 34419550 [Abstract] [Full Text] [Related]
3. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C, de Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E, Gálvez-Martín P, Marchal JA. Acta Biomater; 2020 Apr 01; 106():114-123. PubMed ID: 32027992 [Abstract] [Full Text] [Related]
4. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Liu S, Kilian D, Ahlfeld T, Hu Q, Gelinsky M. Biofabrication; 2023 Feb 15; 15(2):. PubMed ID: 36735961 [Abstract] [Full Text] [Related]
5. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Xu L, Varkey M, Jorgensen A, Ju J, Jin Q, Park JH, Fu Y, Zhang G, Ke D, Zhao W, Hou R, Atala A. Biofabrication; 2020 Jul 29; 12(4):045012. PubMed ID: 32619999 [Abstract] [Full Text] [Related]
6. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A. Biomaterials; 2016 Nov 29; 106():58-68. PubMed ID: 27552316 [Abstract] [Full Text] [Related]
7. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Tissue Eng Part A; 2021 Sep 29; 27(17-18):1168-1181. PubMed ID: 33218292 [Abstract] [Full Text] [Related]
8. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W, Cheng Y, Zhu Y, Chen C. J Biomater Appl; 2018 Nov 29; 33(5):609-618. PubMed ID: 30360677 [Abstract] [Full Text] [Related]
9. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L, Huynh ND, Vecheck A, Kishore V, Bashur CA, Mitra K. J Biomed Mater Res A; 2022 Mar 29; 110(3):535-546. PubMed ID: 34486214 [Abstract] [Full Text] [Related]
13. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A, McCaughey-Chapman A, Raos B, O'Carroll SJ, Connor B, Svirskis D. Biomed Mater; 2022 Jun 15; 17(5):. PubMed ID: 35654031 [Abstract] [Full Text] [Related]
14. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. Adv Mater; 2015 Mar 04; 27(9):1607-14. PubMed ID: 25641220 [Abstract] [Full Text] [Related]
17. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. Chen Y, Xiong X, Liu X, Cui R, Wang C, Zhao G, Zhi W, Lu M, Duan K, Weng J, Qu S, Ge J. J Mater Chem B; 2020 Jul 07; 8(25):5500-5514. PubMed ID: 32484194 [Abstract] [Full Text] [Related]
18. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A, Mandal BB, Bhardwaj N. J Biomed Mater Res A; 2022 Apr 07; 110(4):884-898. PubMed ID: 34913587 [Abstract] [Full Text] [Related]