These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
335 related items for PubMed ID: 31277660
1. Construction of Escherichia coli cell factories for crocin biosynthesis. Wang W, He P, Zhao D, Ye L, Dai L, Zhang X, Sun Y, Zheng J, Bi C. Microb Cell Fact; 2019 Jul 05; 18(1):120. PubMed ID: 31277660 [Abstract] [Full Text] [Related]
2. Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Demurtas OC, Frusciante S, Ferrante P, Diretto G, Azad NH, Pietrella M, Aprea G, Taddei AR, Romano E, Mi J, Al-Babili S, Frigerio L, Giuliano G. Plant Physiol; 2018 Jul 05; 177(3):990-1006. PubMed ID: 29844227 [Abstract] [Full Text] [Related]
3. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. Ahrazem O, Rubio-Moraga A, Berman J, Capell T, Christou P, Zhu C, Gómez-Gómez L. New Phytol; 2016 Jan 05; 209(2):650-63. PubMed ID: 26377696 [Abstract] [Full Text] [Related]
4. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.). López-Jimenez AJ, Frusciante S, Niza E, Ahrazem O, Rubio-Moraga Á, Diretto G, Gómez-Gómez L. Int J Mol Sci; 2021 Aug 16; 22(16):. PubMed ID: 34445522 [Abstract] [Full Text] [Related]
5. UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin in Gardenia jasminoides. Nagatoshi M, Terasaka K, Owaki M, Sota M, Inukai T, Nagatsu A, Mizukami H. FEBS Lett; 2012 Apr 05; 586(7):1055-61. PubMed ID: 22569263 [Abstract] [Full Text] [Related]
15. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Zheng X, Mi J, Balakrishna A, Liew KX, Ablazov A, Sougrat R, Al-Babili S. Plant Biotechnol J; 2022 Nov 05; 20(11):2202-2216. PubMed ID: 35997958 [Abstract] [Full Text] [Related]
16. Multi-species transcriptome analyses for the regulation of crocins biosynthesis in Crocus. Ahrazem O, Argandoña J, Fiore A, Rujas A, Rubio-Moraga Á, Castillo R, Gómez-Gómez L. BMC Genomics; 2019 Apr 27; 20(1):320. PubMed ID: 31029081 [Abstract] [Full Text] [Related]
17. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Chai F, Wang Y, Mei X, Yao M, Chen Y, Liu H, Xiao W, Yuan Y. Microb Cell Fact; 2017 Mar 29; 16(1):54. PubMed ID: 28356104 [Abstract] [Full Text] [Related]
18. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, Richter M, He C, Ji A, Sun W, Kong J, Hu K, Ren F, Song J, Wang Z, Gao T, Xiong C, Yu H, Xin T, Albert VA, Giuliano G, Chen S, Song J. BMC Biol; 2020 Jun 18; 18(1):63. PubMed ID: 32552824 [Abstract] [Full Text] [Related]
19. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Gómez-Gómez L, Pacios LF, Diaz-Perales A, Garrido-Arandia M, Argandoña J, Rubio-Moraga Á, Ahrazem O. Int J Mol Sci; 2018 May 09; 19(5):. PubMed ID: 29747375 [Abstract] [Full Text] [Related]
20. Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Kim SH, Lee JM, Kim SC, Park CB, Lee PC. Biochem Cell Biol; 2014 Apr 09; 92(2):105-11. PubMed ID: 24697694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]