These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
394 related items for PubMed ID: 31281800
1. Eucalyptal D Enhances the Antifungal Effect of Fluconazole on Fluconazole-Resistant Candida albicans by Competitively Inhibiting Efflux Pump. Xu J, Liu R, Sun F, An L, Shang Z, Kong L, Yang M. Front Cell Infect Microbiol; 2019; 9():211. PubMed ID: 31281800 [Abstract] [Full Text] [Related]
2. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD. Antimicrob Agents Chemother; 2008 Nov; 52(11):3851-62. PubMed ID: 18710914 [Abstract] [Full Text] [Related]
3. The anti-staphylococcal fusidic acid as an efflux pump inhibitor combined with fluconazole against vaginal candidiasis in mouse model. Gomaa SE, Abbas HA, Mohamed FA, Ali MAM, Ibrahim TM, Abdel Halim AS, Alghamdi MA, Mansour B, Chaudhary AA, Elkelish A, Boufahja F, Hegazy WAH, Yehia FAA. BMC Microbiol; 2024 Feb 10; 24(1):54. PubMed ID: 38341568 [Abstract] [Full Text] [Related]
4. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Sklar LA, Cannon RD. Antimicrob Agents Chemother; 2012 Mar 10; 56(3):1508-15. PubMed ID: 22203607 [Abstract] [Full Text] [Related]
5. Expression of Major Efflux Pumps in Fluconazole-Resistant Candida albicans. Pourakbari B, Teymuri M, Mahmoudi S, Valian SK, Movahedi Z, Eshaghi H, Mamishi S. Infect Disord Drug Targets; 2017 Mar 10; 17(3):178-184. PubMed ID: 28558643 [Abstract] [Full Text] [Related]
6. Impact of Farnesol as a Modulator of Efflux Pumps in a Fluconazole-Resistant Strain of Candida albicans. Černáková L, Dižová S, Gášková D, Jančíková I, Bujdáková H. Microb Drug Resist; 2019 Mar 10; 25(6):805-812. PubMed ID: 30785845 [Abstract] [Full Text] [Related]
7. A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates. Bhattacharya S, Sobel JD, White TC. Antimicrob Agents Chemother; 2016 Oct 10; 60(10):5858-66. PubMed ID: 27431223 [Abstract] [Full Text] [Related]
8. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. Sun LM, Liao K, Liang S, Yu PH, Wang DY. J Appl Microbiol; 2015 Apr 10; 118(4):826-38. PubMed ID: 25641229 [Abstract] [Full Text] [Related]
9. Vanillin confers antifungal drug synergism in Candida albicans by impeding CaCdr2p driven efflux. Saibabu V, Fatima Z, Singh S, Khan LA, Hameed S. J Mycol Med; 2020 Apr 10; 30(1):100921. PubMed ID: 31937429 [Abstract] [Full Text] [Related]
10. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J. Antimicrob Agents Chemother; 1995 Nov 10; 39(11):2378-86. PubMed ID: 8585712 [Abstract] [Full Text] [Related]
11. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India. Mane A, Vidhate P, Kusro C, Waman V, Saxena V, Kulkarni-Kale U, Risbud A. Mycoses; 2016 Feb 10; 59(2):93-100. PubMed ID: 26648048 [Abstract] [Full Text] [Related]
12. [Investigation of the expression levels of efflux pumps in fluconazole-resistant Candida albicans isolates]. Gulat S, Doluca Dereli M. Mikrobiyol Bul; 2014 Apr 10; 48(2):325-34. PubMed ID: 24819270 [Abstract] [Full Text] [Related]
13. [Investigation of mutations in transcription factors of efflux pump genes in fluconazole-resistant Candida albicans strains overexpressing the efflux pumps]. Kalkandelen KT, Doluca Dereli M. Mikrobiyol Bul; 2015 Oct 10; 49(4):609-18. PubMed ID: 26649419 [Abstract] [Full Text] [Related]
14. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Tsao S, Rahkhoodaee F, Raymond M. Antimicrob Agents Chemother; 2009 Apr 10; 53(4):1344-52. PubMed ID: 19223631 [Abstract] [Full Text] [Related]
15. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. Zhang H, Gao A, Li F, Zhang G, Ho HI, Liao W. Yakugaku Zasshi; 2009 May 10; 129(5):623-30. PubMed ID: 19420894 [Abstract] [Full Text] [Related]
16. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes. Ricardo E, Costa-de-Oliveira S, Dias AS, Guerra J, Rodrigues AG, Pina-Vaz C. FEMS Yeast Res; 2009 Jun 10; 9(4):618-25. PubMed ID: 19416368 [Abstract] [Full Text] [Related]
17. [Function and gene expression of the active efflux transporters in drug-resistant Candida albicans]. Guo HJ, Xia ZD, Wu GL, Zhou H. Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Feb 10; 32(1):183-7. PubMed ID: 17344615 [Abstract] [Full Text] [Related]
18. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Holmes AR, Tsao S, Ong SW, Lamping E, Niimi K, Monk BC, Niimi M, Kaneko A, Holland BR, Schmid J, Cannon RD. Mol Microbiol; 2006 Oct 10; 62(1):170-86. PubMed ID: 16942600 [Abstract] [Full Text] [Related]
19. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Shao J, Zhang M, Wang T, Li Y, Wang C. Pharm Biol; 2016 Oct 10; 54(6):984-92. PubMed ID: 26459663 [Abstract] [Full Text] [Related]
20. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Ahmad A, Khan A, Manzoor N. Eur J Pharm Sci; 2013 Jan 23; 48(1-2):80-6. PubMed ID: 23111348 [Abstract] [Full Text] [Related] Page: [Next] [New Search]