These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
673 related items for PubMed ID: 31289828
1. Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Zhang L, Fabbri D, Upender R, Kent D. Sleep; 2019 Oct 21; 42(11):. PubMed ID: 31289828 [Abstract] [Full Text] [Related]
2. Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters. Stepnowsky C, Levendowski D, Popovic D, Ayappa I, Rapoport DM. Sleep Med; 2013 Nov 21; 14(11):1199-207. PubMed ID: 24047533 [Abstract] [Full Text] [Related]
3. Expert-level sleep scoring with deep neural networks. Biswal S, Sun H, Goparaju B, Westover MB, Sun J, Bianchi MT. J Am Med Inform Assoc; 2018 Dec 01; 25(12):1643-1650. PubMed ID: 30445569 [Abstract] [Full Text] [Related]
4. Automated multi-model deep neural network for sleep stage scoring with unfiltered clinical data. Zhang X, Xu M, Li Y, Su M, Xu Z, Wang C, Kang D, Li H, Mu X, Ding X, Xu W, Wang X, Han D. Sleep Breath; 2020 Jun 01; 24(2):581-590. PubMed ID: 31938990 [Abstract] [Full Text] [Related]
5. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning. Abou Jaoude M, Sun H, Pellerin KR, Pavlova M, Sarkis RA, Cash SS, Westover MB, Lam AD. Sleep; 2020 Nov 12; 43(11):. PubMed ID: 32478820 [Abstract] [Full Text] [Related]
6. Comparison of automated deep neural network against manual sleep stage scoring in clinical data. Cheng H, Yang Y, Shi J, Li Z, Feng Y, Wang X. Comput Biol Med; 2024 Sep 12; 179():108855. PubMed ID: 39029432 [Abstract] [Full Text] [Related]
7. Convolution-and Attention-Based Neural Network for Automated Sleep Stage Classification. Zhu T, Luo W, Yu F. Int J Environ Res Public Health; 2020 Jun 10; 17(11):. PubMed ID: 32532084 [Abstract] [Full Text] [Related]
8. A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals. Yildirim O, Baloglu UB, Acharya UR. Int J Environ Res Public Health; 2019 Feb 19; 16(4):. PubMed ID: 30791379 [Abstract] [Full Text] [Related]
9. Robust, automated sleep scoring by a compact neural network with distributional shift correction. Barger Z, Frye CG, Liu D, Dan Y, Bouchard KE. PLoS One; 2019 Feb 19; 14(12):e0224642. PubMed ID: 31834897 [Abstract] [Full Text] [Related]
10. An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects. Sharma M, Yadav A, Tiwari J, Karabatak M, Yildirim O, Acharya UR. Int J Environ Res Public Health; 2022 Jun 11; 19(12):. PubMed ID: 35742426 [Abstract] [Full Text] [Related]
11. Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches. Ma YJX, Zschocke J, Glos M, Kluge M, Penzel T, Kantelhardt JW, Bartsch RP. Comput Biol Med; 2023 Sep 11; 163():107193. PubMed ID: 37421734 [Abstract] [Full Text] [Related]
12. Neonatal sleep stage identification using long short-term memory learning system. Fraiwan L, Alkhodari M. Med Biol Eng Comput; 2020 Jun 11; 58(6):1383-1391. PubMed ID: 32281071 [Abstract] [Full Text] [Related]
13. Long Short-Term Memory Networks for Unconstrained Sleep Stage Classification Using Polyvinylidene Fluoride Film Sensor. Choi SH, Kwon HB, Jin HW, Yoon H, Lee MH, Lee YJ, Park KS. IEEE J Biomed Health Inform; 2020 Dec 11; 24(12):3606-3615. PubMed ID: 32149661 [Abstract] [Full Text] [Related]
14. Inter-expert and intra-expert reliability in sleep spindle scoring. Wendt SL, Welinder P, Sorensen HB, Peppard PE, Jennum P, Perona P, Mignot E, Warby SC. Clin Neurophysiol; 2015 Aug 11; 126(8):1548-56. PubMed ID: 25434753 [Abstract] [Full Text] [Related]
15. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection. Toma TI, Choi S. Sensors (Basel); 2023 May 21; 23(10):. PubMed ID: 37430865 [Abstract] [Full Text] [Related]
16. Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data. Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR, Castriotta RJ. Sensors (Basel); 2020 Dec 23; 21(1):. PubMed ID: 33374527 [Abstract] [Full Text] [Related]
17. Staging Sleep in Polysomnograms: Analysis of Inter-Scorer Variability. Younes M, Raneri J, Hanly P. J Clin Sleep Med; 2016 Jun 15; 12(6):885-94. PubMed ID: 27070243 [Abstract] [Full Text] [Related]
18. A novel sleep stage scoring system: Combining expert-based features with the generalized linear model. Gunnarsdottir KM, Gamaldo C, Salas RM, Ewen JB, Allen RP, Hu K, Sarma SV. J Sleep Res; 2020 Oct 15; 29(5):e12991. PubMed ID: 32030843 [Abstract] [Full Text] [Related]
19. Minimizing Interrater Variability in Staging Sleep by Use of Computer-Derived Features. Younes M, Hanly PJ. J Clin Sleep Med; 2016 Oct 15; 12(10):1347-1356. PubMed ID: 27448418 [Abstract] [Full Text] [Related]
20. A Hierarchical Neural Network for Sleep Stage Classification Based on Comprehensive Feature Learning and Multi-Flow Sequence Learning. Sun C, Chen C, Li W, Fan J, Chen W. IEEE J Biomed Health Inform; 2020 May 15; 24(5):1351-1366. PubMed ID: 31478877 [Abstract] [Full Text] [Related] Page: [Next] [New Search]