These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 3129344

  • 1. Reconstituted microsomal lipid peroxidation: ADP-Fe3+-dependent peroxidation of phospholipid vesicles containing NADPH-cytochrome P450 reductase and cytochrome P450.
    Morehouse LA, Aust SD.
    Free Radic Biol Med; 1988; 4(5):269-77. PubMed ID: 3129344
    [Abstract] [Full Text] [Related]

  • 2. Microsomal lipid peroxidation: the role of NADPH--cytochrome P450 reductase and cytochrome P450.
    Sevanian A, Nordenbrand K, Kim E, Ernster L, Hochstein P.
    Free Radic Biol Med; 1990; 8(2):145-52. PubMed ID: 2110108
    [Abstract] [Full Text] [Related]

  • 3. Superoxide generation by NADPH-cytochrome P-450 reductase: the effect of iron chelators and the role of superoxide in microsomal lipid peroxidation.
    Morehouse LA, Thomas CE, Aust SD.
    Arch Biochem Biophys; 1984 Jul; 232(1):366-77. PubMed ID: 6331320
    [Abstract] [Full Text] [Related]

  • 4. A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation.
    Minakami H, Arai H, Nakano M, Sugioka K, Suzuki S, Sotomatsu A.
    Biochem Biophys Res Commun; 1988 Jun 30; 153(3):973-8. PubMed ID: 2839175
    [Abstract] [Full Text] [Related]

  • 5. Rabbit liver microsomal lipid peroxidation. The effect of lipid on the rate of peroxidation.
    Tien M, Aust SD.
    Biochim Biophys Acta; 1982 Jul 20; 712(1):1-9. PubMed ID: 6810940
    [Abstract] [Full Text] [Related]

  • 6. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation.
    Puntarulo S, Cederbaum AI.
    Arch Biochem Biophys; 1988 Aug 01; 264(2):482-91. PubMed ID: 2840858
    [Abstract] [Full Text] [Related]

  • 7. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1).
    Ekström G, Ingelman-Sundberg M.
    Biochem Pharmacol; 1989 Apr 15; 38(8):1313-9. PubMed ID: 2495801
    [Abstract] [Full Text] [Related]

  • 8. Mechanism of ochratoxin A stimulated lipid peroxidation.
    Omar RF, Hasinoff BB, Mejilla F, Rahimtula AD.
    Biochem Pharmacol; 1990 Sep 15; 40(6):1183-91. PubMed ID: 2119584
    [Abstract] [Full Text] [Related]

  • 9. A microsomal membrane component associated with iron reduction in NADPH-supported lipid peroxidation.
    Tampo Y, Yonaha M.
    Lipids; 1995 Jan 15; 30(1):55-62. PubMed ID: 7760689
    [Abstract] [Full Text] [Related]

  • 10. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR, Reed GA, Parkinson A.
    Arch Biochem Biophys; 1989 Feb 01; 268(2):605-16. PubMed ID: 2464338
    [Abstract] [Full Text] [Related]

  • 11. NADPH-initiated cytochrome P450-dependent free iron-independent microsomal lipid peroxidation: specific prevention by ascorbic acid.
    Ghosh MK, Mukhopadhyay M, Chatterjee IB.
    Mol Cell Biochem; 1997 Jan 01; 166(1-2):35-44. PubMed ID: 9046019
    [Abstract] [Full Text] [Related]

  • 12. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K, Nakano H, Nakano M, Tero-Kubota S, Ikegami Y.
    Biochim Biophys Acta; 1983 Oct 11; 753(3):411-21. PubMed ID: 6311278
    [Abstract] [Full Text] [Related]

  • 13. The role of iron chelators and oxygen in the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P450 oxidoreductase-dependent chromium(VI) reduction.
    Mikalsen A, Capellmann M, Alexander J.
    Analyst; 1995 Mar 11; 120(3):935-8. PubMed ID: 7741258
    [Abstract] [Full Text] [Related]

  • 14. Mechanism of phospholipid peroxidation induced by ferric ion-ADP-adriamycin-co-ordination complex.
    Sugioka K, Nakano M.
    Biochim Biophys Acta; 1982 Nov 12; 713(2):333-43. PubMed ID: 6295497
    [Abstract] [Full Text] [Related]

  • 15. The effect of diethyldithiocarbamate on the lipid peroxidation of rat-liver microsomes and intact hepatocytes.
    Koster JF, van Berkel TJ.
    Biochem Pharmacol; 1983 Nov 15; 32(22):3307-10. PubMed ID: 6316977
    [Abstract] [Full Text] [Related]

  • 16. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450.
    Goeptar AR, te Koppele JM, van Maanen JM, Zoetemelk CE, Vermeulen NP.
    Biochem Pharmacol; 1992 Jan 22; 43(2):343-52. PubMed ID: 1310854
    [Abstract] [Full Text] [Related]

  • 17. Cytochrome b(5) plays a key role in human microsomal chromium(VI) reduction.
    Jannetto PJ, Antholine WE, Myers CR.
    Toxicology; 2001 Feb 28; 159(3):119-33. PubMed ID: 11223168
    [Abstract] [Full Text] [Related]

  • 18. Importance of Fe2+-ADP and the relative unimportance of OH in the mechanism of mitomycin C-induced lipid peroxidation.
    Nakano H, Sugioka K, Nakano M, Mizukami M, Kimura H, Tero-Kubota S, Ikegami Y.
    Biochim Biophys Acta; 1984 Dec 06; 796(3):285-93. PubMed ID: 6095916
    [Abstract] [Full Text] [Related]

  • 19. Paraquat and ferritin-dependent lipid peroxidation.
    Saito M, Thomas CE, Aust SD.
    J Free Radic Biol Med; 1985 Dec 06; 1(3):179-85. PubMed ID: 3939139
    [Abstract] [Full Text] [Related]

  • 20. Oxygen reduction and lipid peroxidation by iron chelates with special reference to ferric nitrilotriacetate.
    Hamazaki S, Okada S, Li JL, Toyokuni S, Midorikawa O.
    Arch Biochem Biophys; 1989 Jul 06; 272(1):10-7. PubMed ID: 2500058
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.