These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 31299048
1. Simulation of the flow field and the chemical reaction coupling of selective catalytic reduction (SCR) system using an orthogonal experiment. Ma Q, Zhang D, Gan X. PLoS One; 2019; 14(7):e0216138. PubMed ID: 31299048 [Abstract] [Full Text] [Related]
2. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Xie L, Liu F, Ren L, Shi X, Xiao FS, He H. Environ Sci Technol; 2014; 48(1):566-72. PubMed ID: 24295053 [Abstract] [Full Text] [Related]
3. Spectroscopic identification and catalytic relevance of NH4+ intermediates in selective NOx reduction over Cu-SSZ-13 zeolites. Rizzotto V, Chen D, Tabak BM, Yang JY, Ye D, Simon U, Chen P. Chemosphere; 2020 Jul; 250():126272. PubMed ID: 32109703 [Abstract] [Full Text] [Related]
4. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite. Petitto C, Delahay G. J Environ Sci (China); 2018 Mar; 65():246-252. PubMed ID: 29548395 [Abstract] [Full Text] [Related]
5. Ammonia-Containing Species Formed in Cu-Chabazite As Per In Situ EPR, Solid-State NMR, and DFT Calculations. Moreno-González M, Hueso B, Boronat M, Blasco T, Corma A. J Phys Chem Lett; 2015 Mar 19; 6(6):1011-7. PubMed ID: 26262861 [Abstract] [Full Text] [Related]
6. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures. Su W, Chang H, Peng Y, Zhang C, Li J. Environ Sci Technol; 2015 Jan 06; 49(1):467-73. PubMed ID: 25485842 [Abstract] [Full Text] [Related]
7. Review of Core-shell structure zeolite-based catalysts for NOx emission control. Jia L, Liu J, Cheng H, Zhao Z, Liu J. J Environ Sci (China); 2025 Apr 06; 150():451-465. PubMed ID: 39306420 [Abstract] [Full Text] [Related]
8. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Paolucci C, Di Iorio JR, Schneider WF, Gounder R. Acc Chem Res; 2020 Sep 15; 53(9):1881-1892. PubMed ID: 32786332 [Abstract] [Full Text] [Related]
9. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects. Liu F, Yu Y, He H. Chem Commun (Camb); 2014 Aug 11; 50(62):8445-63. PubMed ID: 24819654 [Abstract] [Full Text] [Related]
10. Combustion and emission characteristics for a marine low-speed diesel engine with high-pressure SCR system. Zhu Y, Xia C, Shreka M, Wang Z, Yuan L, Zhou S, Feng Y, Hou Q, Ahmed SA. Environ Sci Pollut Res Int; 2020 Apr 11; 27(12):12851-12865. PubMed ID: 30734255 [Abstract] [Full Text] [Related]
11. Experimental demonstration of NOx reduction and ammonia slip for diesel engine SCR system. Yue G, Qiu T, Lei Y. Environ Sci Pollut Res Int; 2022 Jan 11; 29(1):1118-1133. PubMed ID: 34350573 [Abstract] [Full Text] [Related]
12. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal. Chen JX, Pan KL, Yu SJ, Yen SY, Chang MB. Environ Sci Pollut Res Int; 2017 Sep 11; 24(26):21496-21508. PubMed ID: 28748438 [Abstract] [Full Text] [Related]
13. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations. Liu ZG, Wall JC, Barge P, Dettmann ME, Ottinger NA. Environ Sci Technol; 2011 Apr 01; 45(7):2965-72. PubMed ID: 21446770 [Abstract] [Full Text] [Related]
14. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels. Johnson DR, Bedick CR, Clark NN, McKain DL. Environ Sci Technol; 2009 May 15; 43(10):3959-63. PubMed ID: 19544914 [Abstract] [Full Text] [Related]
15. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study. He C, Li J, Ma Z, Tan J, Zhao L. J Environ Sci (China); 2015 Sep 01; 35():55-61. PubMed ID: 26354692 [Abstract] [Full Text] [Related]
16. Evaluation of Cu-PPHs as active catalysts for the SCR process to control NOx emissions from heavy duty diesel vehicles. Moreno-Tost R, Oliveira ML, Eliche-Quesada D, Jiménez-Jiménez J, Jiménez-López A, Rodríguez-Castellón E. Chemosphere; 2008 Jun 01; 72(4):608-15. PubMed ID: 18485445 [Abstract] [Full Text] [Related]
17. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions. Lehtoranta K, Vesala H, Koponen P, Korhonen S. Environ Sci Technol; 2015 Apr 07; 49(7):4735-41. PubMed ID: 25780953 [Abstract] [Full Text] [Related]
18. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: a comparative study. Yu C, Dong L, Chen F, Liu X, Huang B. Environ Technol; 2017 Apr 07; 38(8):1030-1042. PubMed ID: 27494642 [Abstract] [Full Text] [Related]
19. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst. Choi SW, Choi SK, Bae HK. J Air Waste Manag Assoc; 2015 Apr 07; 65(4):485-91. PubMed ID: 25947218 [Abstract] [Full Text] [Related]
20. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. Shi X, Liu F, Xie L, Shan W, He H. Environ Sci Technol; 2013 Apr 02; 47(7):3293-8. PubMed ID: 23477804 [Abstract] [Full Text] [Related] Page: [Next] [New Search]