These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


193 related items for PubMed ID: 31304965

  • 1. Molecular signal communication during arbuscular mycorrhizal formation induces significant transcriptional reprogramming of wheat (Triticum aestivum) roots.
    Tian H, Wang R, Li M, Dang H, Solaiman ZM.
    Ann Bot; 2019 Nov 27; 124(6):1109-1119. PubMed ID: 31304965
    [Abstract] [Full Text] [Related]

  • 2. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Li M, Wang R, Tian H, Gao Y.
    Mycorrhiza; 2018 Nov 27; 28(8):747-759. PubMed ID: 30251133
    [Abstract] [Full Text] [Related]

  • 3. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi.
    Tian H, Yuan X, Duan J, Li W, Zhai B, Gao Y.
    PLoS One; 2017 Nov 27; 12(2):e0172154. PubMed ID: 28207830
    [Abstract] [Full Text] [Related]

  • 4. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.
    Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K.
    Plant Cell Physiol; 2015 Aug 27; 56(8):1490-511. PubMed ID: 26009592
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi.
    Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X.
    Ecotoxicol Environ Saf; 2019 Dec 30; 186():109744. PubMed ID: 31627093
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.
    Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE.
    Plant Cell Physiol; 2017 Jun 01; 58(6):1003-1017. PubMed ID: 28387868
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Deep sequencing-based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi.
    Zhao X, Zhang J, Chen C, Yang J, Zhu H, Liu M, Lv F.
    BMC Genomics; 2014 Aug 31; 15(1):747. PubMed ID: 25174959
    [Abstract] [Full Text] [Related]

  • 12. Wheat dwarfing reshapes plant and fungal development in arbuscular mycorrhizal symbiosis.
    Alaux PL, Courty PE, Fréville H, David J, Rocher A, Taschen E.
    Mycorrhiza; 2024 Jul 31; 34(4):351-360. PubMed ID: 38816524
    [Abstract] [Full Text] [Related]

  • 13. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.).
    Duan J, Tian H, Drijber RA, Gao Y.
    Plant Physiol Biochem; 2015 Nov 31; 96():199-208. PubMed ID: 26298806
    [Abstract] [Full Text] [Related]

  • 14. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development.
    Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F.
    Plant J; 2012 Feb 31; 69(3):510-28. PubMed ID: 21978245
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Arbuscular mycorrhizal symbiosis with Rhizophagus irregularis DAOM197198 modifies the root transcriptome of walnut trees.
    Durney C, Boussageon R, El-Mjiyad N, Wipf D, Courty PE.
    Mycorrhiza; 2024 Jul 31; 34(4):341-350. PubMed ID: 38801470
    [Abstract] [Full Text] [Related]

  • 17. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism.
    Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA.
    New Phytol; 2019 Jul 31; 223(2):867-881. PubMed ID: 30883790
    [Abstract] [Full Text] [Related]

  • 18. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots.
    Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Hughes D, Cavallini A, Giovannetti M, Giordani T.
    Sci Rep; 2018 Jan 08; 8(1):4. PubMed ID: 29311719
    [Abstract] [Full Text] [Related]

  • 19. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis.
    Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F.
    Mol Plant Microbe Interact; 2010 Jul 08; 23(7):915-26. PubMed ID: 20521954
    [Abstract] [Full Text] [Related]

  • 20. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.
    Zhu X, Song F, Liu S, Liu F.
    Mycorrhiza; 2016 Feb 08; 26(2):133-40. PubMed ID: 26148451
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.