These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 31306941
1. Culture-based analysis of fungi in leaves after the primary and secondary fermentation processes during Ishizuchi-kurocha production and lactate assimilation of P. kudriavzevii. Yamamoto M, Horie M, Fukushima M, Toyotome T. Int J Food Microbiol; 2019 Oct 02; 306():108263. PubMed ID: 31306941 [Abstract] [Full Text] [Related]
2. Draft Genome Sequence of the Yeast Pichia manshurica YM63, a Participant in Secondary Fermentation of Ishizuchi-Kurocha, a Japanese Fermented Tea. Toyotome T, Yamamoto M, Horie M. Microbiol Resour Announc; 2019 Jul 03; 8(27):. PubMed ID: 31270197 [Abstract] [Full Text] [Related]
3. Controlling the microbial composition during the fermentation of Ishizuchi-kurocha. Li Z, Jiang L, Wei L, Ohno T, Syaputri Y, Horie M, Iwahashi H. Biosci Biotechnol Biochem; 2021 Dec 22; 86(1):117-124. PubMed ID: 34669923 [Abstract] [Full Text] [Related]
4. Cooperative Response of Pichia kudriavzevii and Saccharomyces cerevisiae to Lactic Acid Stress in Baijiu Fermentation. Deng N, Du H, Xu Y. J Agric Food Chem; 2020 Apr 29; 68(17):4903-4911. PubMed ID: 32180399 [Abstract] [Full Text] [Related]
5. Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawè, a cereal dough produced in West Africa. Houngbédji M, Johansen P, Padonou SW, Akissoé N, Arneborg N, Nielsen DS, Hounhouigan DJ, Jespersen L. Food Microbiol; 2018 Dec 29; 76():267-278. PubMed ID: 30166150 [Abstract] [Full Text] [Related]
6. Effects of intrinsic microbial stress factors on viability and physiological condition of yeasts isolated from spontaneously fermented cereal doughs. Houngbédji M, Johansen P, Padonou SW, Hounhouigan DJ, Siegumfeldt H, Jespersen L. Int J Food Microbiol; 2019 Sep 02; 304():75-88. PubMed ID: 31174038 [Abstract] [Full Text] [Related]
7. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris. de Lima PB, Mulder KC, Melo NT, Carvalho LS, Menino GS, Mulinari E, de Castro VH, Dos Reis TF, Goldman GH, Magalhães BS, Parachin NS. Microb Cell Fact; 2016 Sep 15; 15(1):158. PubMed ID: 27634467 [Abstract] [Full Text] [Related]
8. Analysis of D-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha. Horie M, Ohmiya Y, Ohmori T. Biosci Microbiota Food Health; 2023 Sep 15; 42(4):254-263. PubMed ID: 37791341 [Abstract] [Full Text] [Related]
9. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Park HJ, Bae JH, Ko HJ, Lee SH, Sung BH, Han JI, Sohn JH. Biotechnol Bioeng; 2018 Sep 15; 115(9):2232-2242. PubMed ID: 29896854 [Abstract] [Full Text] [Related]
10. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Horie M, Nara K, Sugino S, Umeno A, Yoshida Y. Food Sci Nutr; 2017 May 15; 5(3):639-645. PubMed ID: 28572952 [Abstract] [Full Text] [Related]
11. The crucial role of yeasts in the wet fermentation of coffee beans and quality. Elhalis H, Cox J, Frank D, Zhao J. Int J Food Microbiol; 2020 Nov 16; 333():108796. PubMed ID: 32771820 [Abstract] [Full Text] [Related]
12. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Greppi A, Krych Ł, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N, Cocolin L, Jespersen L. Int J Food Microbiol; 2015 Jul 16; 205():81-9. PubMed ID: 25910031 [Abstract] [Full Text] [Related]
13. l-Lactic Acid Production via Sustainable Neutralizer-Free Route by Engineering Acid-Tolerant Yeast Pichia kudriavzevii. Zhang B, Li R, Yu L, Wu C, Liu Z, Bai F, Yu B, Wang L. J Agric Food Chem; 2023 Jul 26; 71(29):11131-11140. PubMed ID: 37439413 [Abstract] [Full Text] [Related]
14. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Akabanda F, Owusu-Kwarteng J, Tano-Debrah K, Glover RL, Nielsen DS, Jespersen L. Food Microbiol; 2013 Jun 26; 34(2):277-83. PubMed ID: 23541194 [Abstract] [Full Text] [Related]
15. Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter nuruk. Sugiyama M, Baek SY, Takashima S, Miyashita N, Ishida K, Mun J, Yeo SH. J Biosci Bioeng; 2018 Dec 26; 126(6):682-689. PubMed ID: 30401451 [Abstract] [Full Text] [Related]
16. Effects of film-forming Pichia and Candida yeasts on cider and wine as post-fermentation contaminants. Lorenzini M, Cappello MS, Green A, Zapparoli G. Lett Appl Microbiol; 2023 Sep 01; 76(9):. PubMed ID: 37656878 [Abstract] [Full Text] [Related]
17. The microbiota of Lafun, an African traditional cassava food product. Wilfrid Padonou S, Nielsen DS, Hounhouigan JD, Thorsen L, Nago MC, Jakobsen M. Int J Food Microbiol; 2009 Jul 31; 133(1-2):22-30. PubMed ID: 19493582 [Abstract] [Full Text] [Related]
18. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris. Yamada R, Ogura K, Kimoto Y, Ogino H. World J Microbiol Biotechnol; 2019 Feb 04; 35(2):37. PubMed ID: 30715602 [Abstract] [Full Text] [Related]
19. Yeasts and bacteria associated with kocho, an Ethiopian fermented food produced from enset (Ensete ventricosum). Birmeta G, Bakeeva A, Passoth V. Antonie Van Leeuwenhoek; 2019 Apr 04; 112(4):651-659. PubMed ID: 30368690 [Abstract] [Full Text] [Related]
20. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production. Chamnipa N, Thanonkeo S, Klanrit P, Thanonkeo P. Braz J Microbiol; 2018 Apr 04; 49(2):378-391. PubMed ID: 29154013 [Abstract] [Full Text] [Related] Page: [Next] [New Search]