These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 31308436
21. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS. Environ Microbiol Rep; 2015 Dec; 7(6):824-30. PubMed ID: 26081517 [Abstract] [Full Text] [Related]
22. Synthetic Phosphorus Metabolic Pathway for Biosafety and Contamination Management of Cyanobacterial Cultivation. Motomura K, Sano K, Watanabe S, Kanbara A, Gamal Nasser AH, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. ACS Synth Biol; 2018 Sep 21; 7(9):2189-2198. PubMed ID: 30203964 [Abstract] [Full Text] [Related]
23. Chemical rescue and inhibition studies to determine the role of Arg301 in phosphite dehydrogenase. Hung JE, Fogle EJ, Garg N, Chekan JR, Nair SK, van der Donk WA. PLoS One; 2014 Sep 21; 9(1):e87134. PubMed ID: 24498026 [Abstract] [Full Text] [Related]
24. Phosphite synthetic auxotrophy as an effective biocontainment strategy for the industrial chassis Pseudomonas putida. Asin-Garcia E, Batianis C, Li Y, Fawcett JD, de Jong I, Dos Santos VAPM. Microb Cell Fact; 2022 Aug 08; 21(1):156. PubMed ID: 35934698 [Abstract] [Full Text] [Related]
25. Structural basis for binding and transfer of heme in bacterial heme-acquisition systems. Naoe Y, Nakamura N, Rahman MM, Tosha T, Nagatoishi S, Tsumoto K, Shiro Y, Sugimoto H. Proteins; 2017 Dec 08; 85(12):2217-2230. PubMed ID: 28913898 [Abstract] [Full Text] [Related]
26. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Mehta D, Ghahremani M, Pérez-Fernández M, Tan M, Schläpfer P, Plaxton WC, Uhrig RG. Plant J; 2021 Feb 08; 105(4):924-941. PubMed ID: 33184936 [Abstract] [Full Text] [Related]
27. Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Gao S, George SJ, Zhou ZH. Dalton Trans; 2016 Mar 28; 45(12):5388-94. PubMed ID: 26906409 [Abstract] [Full Text] [Related]
28. Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE. Jacso T, Grote M, Daus ML, Schmieder P, Keller S, Schneider E, Reif B. Biochemistry; 2009 Mar 17; 48(10):2216-25. PubMed ID: 19159328 [Abstract] [Full Text] [Related]
29. An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. Brillet K, Ruffenach F, Adams H, Journet L, Gasser V, Hoegy F, Guillon L, Hannauer M, Page A, Schalk IJ. ACS Chem Biol; 2012 Dec 21; 7(12):2036-45. PubMed ID: 23009327 [Abstract] [Full Text] [Related]
30. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes. Summers JS, Hoogstraten CG, Britt RD, Base K, Shaw BR, Ribeiro AA, Crumbliss AL. Inorg Chem; 2001 Dec 17; 40(26):6547-54. PubMed ID: 11735462 [Abstract] [Full Text] [Related]
31. Physiological and biochemical responses of Microcystis aeruginosa to phosphite. Zhang J, Geng J, Ren H, Luo J, Zhang A, Wang X. Chemosphere; 2011 Nov 17; 85(8):1325-30. PubMed ID: 21908013 [Abstract] [Full Text] [Related]
32. The Structural Basis of the Binding of Various Aminopolycarboxylates by the Periplasmic EDTA-Binding Protein EppA from Chelativorans sp. BNC1. Lewis KM, Greene CL, Sattler SA, Youn B, Xun L, Kang C. Int J Mol Sci; 2020 May 30; 21(11):. PubMed ID: 32486296 [Abstract] [Full Text] [Related]
33. Structural analysis of a periplasmic binding protein in the tripartite ATP-independent transporter family reveals a tetrameric assembly that may have a role in ligand transport. Cuneo MJ, Changela A, Miklos AE, Beese LS, Krueger JK, Hellinga HW. J Biol Chem; 2008 Nov 21; 283(47):32812-20. PubMed ID: 18723845 [Abstract] [Full Text] [Related]
34. Detection of hypophosphite, phosphite, and orthophosphate in natural geothermal water by ion chromatography. McDowell MM, Ivey MM, Lee ME, Firpo VV, Salmassi TM, Khachikian CS, Foster KL. J Chromatogr A; 2004 Jun 11; 1039(1-2):105-11. PubMed ID: 15250410 [Abstract] [Full Text] [Related]
35. Two ABC Transporters and a Periplasmic Metallochaperone Participate in Zinc Acquisition in Paracoccus denitrificans. Neupane DP, Kumar S, Yukl ET. Biochemistry; 2019 Jan 15; 58(2):126-136. PubMed ID: 30353723 [Abstract] [Full Text] [Related]
36. Separation of hypophosphite, phosphite and phosphate by anion-exchange chromatography. POLLARD FH, ROGERS DE, ROTHWELL MT, NICKLESS G. J Chromatogr; 1962 Oct 15; 9():227-30. PubMed ID: 13972001 [No Abstract] [Full Text] [Related]
37. A fluorometric assay for high-throughput phosphite quantitation in biological and environmental matrices. Bailey CA, Greene BL. Analyst; 2023 Jul 26; 148(15):3650-3658. PubMed ID: 37424451 [Abstract] [Full Text] [Related]
38. Anaerobic utilization of phosphite and hypophosphite by Bacillus sp. Foster TL, Winans L, Helms SJ. Appl Environ Microbiol; 1978 May 26; 35(5):937-44. PubMed ID: 26310 [Abstract] [Full Text] [Related]
39. Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae. Kobayashi I, Imamura S, Hirota R, Kuroda A, Tanaka K. J Gen Appl Microbiol; 2024 Mar 07; 69(5):287-291. PubMed ID: 37587047 [Abstract] [Full Text] [Related]
40. Microbial metabolism of reduced phosphorus compounds. White AK, Metcalf WW. Annu Rev Microbiol; 2007 Mar 07; 61():379-400. PubMed ID: 18035609 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]