These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
160 related items for PubMed ID: 31310976
1. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Sun Y, Jing R, Zheng F, Zhang S, Jiao W, Wang F. Chemosphere; 2019 Dec; 236():124336. PubMed ID: 31310976 [Abstract] [Full Text] [Related]
2. Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Sun Y, Wang W, Zheng F, Zhang S, Wang F, Liu S. Chemosphere; 2020 Jul; 251():126432. PubMed ID: 32169709 [Abstract] [Full Text] [Related]
3. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations. Li X, Yang Y, Gao B, Zhang M. PLoS One; 2015 Jul; 10(4):e0122884. PubMed ID: 25901959 [Abstract] [Full Text] [Related]
4. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. El-Temsah YS, Joner EJ. Environ Toxicol; 2012 Jan; 27(1):42-9. PubMed ID: 20549639 [Abstract] [Full Text] [Related]
5. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D. Environ Pollut; 2016 Mar; 210():338-45. PubMed ID: 26803790 [Abstract] [Full Text] [Related]
6. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Ma X, Gurung A, Deng Y. Sci Total Environ; 2013 Jan 15; 443():844-9. PubMed ID: 23247287 [Abstract] [Full Text] [Related]
9. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron. Dong H, Xie Y, Zeng G, Tang L, Liang J, He Q, Zhao F, Zeng Y, Wu Y. Chemosphere; 2016 Feb 15; 144():1682-9. PubMed ID: 26519799 [Abstract] [Full Text] [Related]
11. Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance. Sun Y, Zheng F, Wang W, Zhang S, Wang F. Toxics; 2020 Apr 03; 8(2):. PubMed ID: 32260118 [Abstract] [Full Text] [Related]
12. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y, Fang Z, Kang Y, Tsang EP. J Hazard Mater; 2014 Jun 30; 275():230-7. PubMed ID: 24880637 [Abstract] [Full Text] [Related]
13. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Ghosh I, Mukherjee A, Mukherjee A. Mutagenesis; 2017 May 01; 32(3):371-387. PubMed ID: 28371930 [Abstract] [Full Text] [Related]
14. Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Kumar D, Roy R, Parashar A, Raichur AM, Chandrasekaran N, Mukherjee A, Mukherjee A. Environ Toxicol; 2017 May 01; 32(5):1617-1627. PubMed ID: 28101988 [Abstract] [Full Text] [Related]
16. Effects of zero-valent iron nanoparticles and quinclorac coexposure on the growth and antioxidant system of rice (Oryza sativa L.). Zhang R, Bai X, Shao J, Chen A, Wu H, Luo S. Ecotoxicol Environ Saf; 2020 Oct 15; 203():111054. PubMed ID: 32888616 [Abstract] [Full Text] [Related]
17. Nanoscale Zero-Valent Iron Has Minimum Toxicological Risk on the Germination and Early Growth of Two Grass Species with Potential for Phytostabilization. Teodoro M, Clemente R, Ferrer-Bustins E, Martínez-Fernández D, Pilar Bernal M, Vítková M, Vítek P, Komárek M. Nanomaterials (Basel); 2020 Aug 05; 10(8):. PubMed ID: 32764467 [Abstract] [Full Text] [Related]