These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


863 related items for PubMed ID: 31314644

  • 1. Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder.
    Unruh KE, Martin LE, Magnon G, Vaillancourt DE, Sweeney JA, Mosconi MW.
    J Neurophysiol; 2019 Oct 01; 122(4):1330-1341. PubMed ID: 31314644
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.
    Mosconi MW, Mohanty S, Greene RK, Cook EH, Vaillancourt DE, Sweeney JA.
    J Neurosci; 2015 Feb 04; 35(5):2015-25. PubMed ID: 25653359
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Initial action output and feedback-guided motor behaviors in autism spectrum disorder.
    Unruh KE, McKinney WS, Bojanek EK, Fleming KK, Sweeney JA, Mosconi MW.
    Mol Autism; 2021 Jul 10; 12(1):52. PubMed ID: 34246292
    [Abstract] [Full Text] [Related]

  • 8. Altered perspective-dependent brain activation while viewing hands and associated imitation difficulties in individuals with autism spectrum disorder.
    Okamoto Y, Kitada R, Miyahara M, Kochiyama T, Naruse H, Sadato N, Okazawa H, Kosaka H.
    Neuroimage Clin; 2018 Jul 10; 19():384-395. PubMed ID: 30035023
    [Abstract] [Full Text] [Related]

  • 9. Aberrant functional connectivity of neural circuits associated with social and sensorimotor deficits in young children with autism spectrum disorder.
    Chen H, Wang J, Uddin LQ, Wang X, Guo X, Lu F, Duan X, Wu L, Chen H.
    Autism Res; 2018 Dec 10; 11(12):1643-1652. PubMed ID: 30475453
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.
    Neely KA, Coombes SA, Planetta PJ, Vaillancourt DE.
    Hum Brain Mapp; 2013 Mar 10; 34(3):698-712. PubMed ID: 22109998
    [Abstract] [Full Text] [Related]

  • 14. Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping.
    Wang Z, Magnon GC, White SP, Greene RK, Vaillancourt DE, Mosconi MW.
    J Neurophysiol; 2015 Apr 01; 113(7):1989-2001. PubMed ID: 25552638
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Motor learning in individuals with autism spectrum disorder: activation in superior parietal lobule related to learning and repetitive behaviors.
    Travers BG, Kana RK, Klinger LG, Klein CL, Klinger MR.
    Autism Res; 2015 Feb 01; 8(1):38-51. PubMed ID: 25258047
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cerebellar and premotor activity during a non-fatiguing grip task reflects motor fatigue in relapsing-remitting multiple sclerosis.
    Svolgaard O, Andersen KW, Bauer C, Madsen KH, Blinkenberg M, Selleberg F, Siebner HR.
    PLoS One; 2018 Feb 01; 13(10):e0201162. PubMed ID: 30356315
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 44.