These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
175 related items for PubMed ID: 31319663
1. Tuning Thermal Expansion in Metal-Organic Frameworks Using a Mixed Linker Solid Solution Approach. Baxter SJ, Schneemann A, Ready AD, Wijeratne P, Wilkinson AP, Burtch NC. J Am Chem Soc; 2019 Aug 14; 141(32):12849-12854. PubMed ID: 31319663 [Abstract] [Full Text] [Related]
2. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. Henke S, Schneemann A, Wütscher A, Fischer RA. J Am Chem Soc; 2012 Jun 06; 134(22):9464-74. PubMed ID: 22575013 [Abstract] [Full Text] [Related]
3. Compositional control of pore geometry in multivariate metal-organic frameworks: an experimental and computational study. Cadman LK, Bristow JK, Stubbs NE, Tiana D, Mahon MF, Walsh A, Burrows AD. Dalton Trans; 2016 Mar 14; 45(10):4316-26. PubMed ID: 26660286 [Abstract] [Full Text] [Related]
4. Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks. Jasuja H, Burtch NC, Huang YG, Cai Y, Walton KS. Langmuir; 2013 Jan 15; 29(2):633-42. PubMed ID: 23214448 [Abstract] [Full Text] [Related]
5. Mixed-linker solid solutions of functionalized pillared-layer MOFs - adjusting structural flexibility, gas sorption, and thermal responsiveness. Schwedler I, Henke S, Wharmby MT, Bajpe SR, Cheetham AK, Fischer RA. Dalton Trans; 2016 Mar 14; 45(10):4230-41. PubMed ID: 26526973 [Abstract] [Full Text] [Related]
6. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Wang Z, Tanabe KK, Cohen SM. Inorg Chem; 2009 Jan 05; 48(1):296-306. PubMed ID: 19053339 [Abstract] [Full Text] [Related]
7. Understanding DABCO Nanorotor Dynamics in Isostructural Metal-Organic Frameworks. Burtch NC, Torres-Knoop A, Foo GS, Leisen J, Sievers C, Ensing B, Dubbeldam D, Walton KS. J Phys Chem Lett; 2015 Mar 05; 6(5):812-6. PubMed ID: 26262657 [Abstract] [Full Text] [Related]
8. Tuning the Pore Environment of MOFs toward Efficient CH4/N2 Separation under Humid Conditions. Li T, Jia X, Chen H, Chang Z, Li L, Wang Y, Li J. ACS Appl Mater Interfaces; 2022 Apr 06; 14(13):15830-15839. PubMed ID: 35319192 [Abstract] [Full Text] [Related]
9. Room-Temperature Synthesis of Metal-Organic Framework Isomers in the Tetragonal and Kagome Crystal Structure. Hungerford J, Walton KS. Inorg Chem; 2019 Jun 17; 58(12):7690-7697. PubMed ID: 31150221 [Abstract] [Full Text] [Related]
10. The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Kim Y, Haldar R, Kim H, Koo J, Kim K. Dalton Trans; 2016 Mar 14; 45(10):4187-92. PubMed ID: 26498836 [Abstract] [Full Text] [Related]
11. Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Jasuja H, Walton KS. Dalton Trans; 2013 Nov 21; 42(43):15421-6. PubMed ID: 24013951 [Abstract] [Full Text] [Related]
12. Synthesis of cobalt-, nickel-, copper-, and zinc-based, water-stable, pillared metal-organic frameworks. Jasuja H, Jiao Y, Burtch NC, Huang YG, Walton KS. Langmuir; 2014 Dec 02; 30(47):14300-7. PubMed ID: 25325734 [Abstract] [Full Text] [Related]
13. Tuning the Negative Thermal Expansion Behavior of the Metal-Organic Framework Cu3BTC2 by Retrofitting. Schneider C, Bodesheim D, Ehrenreich MG, Crocellà V, Mink J, Fischer RA, Butler KT, Kieslich G. J Am Chem Soc; 2019 Jul 03; 141(26):10504-10509. PubMed ID: 31184478 [Abstract] [Full Text] [Related]
14. 3D negative thermal expansion in orthorhombic MIL-68(In). Liu Z, Li Q, Zhu H, Lin K, Deng J, Chen J, Xing X. Chem Commun (Camb); 2018 May 31; 54(45):5712-5715. PubMed ID: 29774355 [Abstract] [Full Text] [Related]
15. Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. Jasuja H, Huang YG, Walton KS. Langmuir; 2012 Dec 11; 28(49):16874-80. PubMed ID: 23134370 [Abstract] [Full Text] [Related]
16. Tunable uniaxial, area, and volume negative thermal expansion in quartz-like and diamond-like metal-organic frameworks. Wang L, Chen Y, Miura H, Suzuki K, Wang C. RSC Adv; 2022 Aug 04; 12(34):21770-21779. PubMed ID: 36043075 [Abstract] [Full Text] [Related]
17. Interpenetration as a mechanism for negative thermal expansion in the metal-organic framework Cu3(btb)2 (MOF-14). Wu Y, Peterson VK, Luks E, Darwish TA, Kepert CJ. Angew Chem Int Ed Engl; 2014 May 12; 53(20):5175-8. PubMed ID: 24692065 [Abstract] [Full Text] [Related]
18. Dioxole functionalized metal-organic frameworks. Dau PV, Polanco LR, Cohen SM. Dalton Trans; 2013 Mar 21; 42(11):4013-8. PubMed ID: 23340964 [Abstract] [Full Text] [Related]
19. Metal-organic frameworks in mixed-matrix membranes for gas separation. Tanh Jeazet HB, Staudt C, Janiak C. Dalton Trans; 2012 Dec 14; 41(46):14003-27. PubMed ID: 23070078 [Abstract] [Full Text] [Related]
20. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L, Xing X. J Am Chem Soc; 2016 Nov 09; 138(44):14530-14533. PubMed ID: 27783492 [Abstract] [Full Text] [Related] Page: [Next] [New Search]