These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 31323769

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN, Banat IM, Winterburn J.
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [Abstract] [Full Text] [Related]

  • 3. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z, He Q, Che C, Liu J, Yang G.
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [Abstract] [Full Text] [Related]

  • 4. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.
    Partovi M, Lotfabad TB, Roostaazad R, Bahmaei M, Tayyebi S.
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1039-47. PubMed ID: 23361970
    [Abstract] [Full Text] [Related]

  • 5. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.
    Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M, Kanaya S.
    J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970
    [Abstract] [Full Text] [Related]

  • 6. Statistical optimization of medium components for biosurfactant production by Pseudomonas guguanensis D30.
    Pardhi DS, Panchal RR, Raval VH, Rajput KN.
    Prep Biochem Biotechnol; 2022 Aug; 52(2):171-180. PubMed ID: 34629025
    [Abstract] [Full Text] [Related]

  • 7. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil.
    Onwosi CO, Odibo FJ.
    World J Microbiol Biotechnol; 2012 Mar; 28(3):937-42. PubMed ID: 22805814
    [Abstract] [Full Text] [Related]

  • 8. Role of phenanthrene in rhamnolipid production by P. putida in different media.
    Martínez-Toledo A, Ríos-Leal E, Vázquez-Duhalt R, González-Chávez Mdel C, Esparza-García JF, Rodríguez-Vázquez R.
    Environ Technol; 2006 Feb; 27(2):137-42. PubMed ID: 16506509
    [Abstract] [Full Text] [Related]

  • 9. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M, Lee N, Kim M, Kim M, Lee S.
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [Abstract] [Full Text] [Related]

  • 10. Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil.
    Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM.
    Bioprocess Biosyst Eng; 2021 Jul; 44(7):1577-1592. PubMed ID: 33687550
    [Abstract] [Full Text] [Related]

  • 11. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B.
    Aparna A, Srinikethan G, Smitha H.
    Colloids Surf B Biointerfaces; 2012 Jun 15; 95():23-9. PubMed ID: 22445235
    [Abstract] [Full Text] [Related]

  • 12. Use of Spondias Mombin fruit pulp as a substrate for biosurfactant production.
    Ejike Ogbonna K, Victor Agu C, Okonkwo CC, Tochukwu Ughamba K, Akor J, Njoku OU.
    Bioengineered; 2021 Dec 15; 12(1):1-12. PubMed ID: 33345695
    [Abstract] [Full Text] [Related]

  • 13. Production and characterization of glycolipid biosurfactant from Achromobacter sp. (PS1) isolate using one-factor-at-a-time (OFAT) approach with feasible utilization of ammonia-soaked lignocellulosic pretreated residues.
    Joy S, Rahman PKSM, Khare SK, Sharma S.
    Bioprocess Biosyst Eng; 2019 Aug 15; 42(8):1301-1315. PubMed ID: 31028463
    [Abstract] [Full Text] [Related]

  • 14. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.
    Silva MA, Silva AF, Rufino RD, Luna JM, Santos VA, Sarubbo LA.
    Water Environ Res; 2017 Feb 01; 89(2):117-126. PubMed ID: 27196308
    [Abstract] [Full Text] [Related]

  • 15. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY, Lu WB, Wei YH, Chen WM, Chang JS.
    Biotechnol Prog; 2007 Feb 01; 23(3):661-6. PubMed ID: 17461551
    [Abstract] [Full Text] [Related]

  • 16. Enhancement of Paenibacillus sp. D9 Lipopeptide Biosurfactant Production Through the Optimization of Medium Composition and Its Application for Biodegradation of Hydrophobic Pollutants.
    Jimoh AA, Lin J.
    Appl Biochem Biotechnol; 2019 Mar 01; 187(3):724-743. PubMed ID: 30043149
    [Abstract] [Full Text] [Related]

  • 17. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.
    Noparat P, Maneerat S, Saimmai A.
    World J Microbiol Biotechnol; 2014 Mar 01; 30(3):865-77. PubMed ID: 24081911
    [Abstract] [Full Text] [Related]

  • 18. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S.
    J Basic Microbiol; 2017 Jan 01; 57(1):21-33. PubMed ID: 27400277
    [Abstract] [Full Text] [Related]

  • 19. Nitrogen dependence of rhamnolipid mediated degradation of petroleum crude oil by indigenous Pseudomonas sp. WD23 in seawater.
    Goveas LC, Selvaraj R, Vinayagam R, Alsaiari AA, Alharthi NS, Sajankila SP.
    Chemosphere; 2022 Oct 01; 304():135235. PubMed ID: 35675868
    [Abstract] [Full Text] [Related]

  • 20. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.
    Singh PB, Sharma S, Saini HS, Chadha BS.
    Lett Appl Microbiol; 2009 Sep 01; 49(3):378-83. PubMed ID: 19627480
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.