These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 31323769

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation.
    Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR.
    Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398
    [Abstract] [Full Text] [Related]

  • 25. The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer.
    Meneses DP, Gudiña EJ, Fernandes F, Gonçalves LRB, Rodrigues LR, Rodrigues S.
    Microbiol Res; 2017 Nov; 204():40-47. PubMed ID: 28870290
    [Abstract] [Full Text] [Related]

  • 26. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media.
    Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R.
    Bioresour Technol; 2007 Jan; 98(1):237-40. PubMed ID: 16413180
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation.
    Jamal P, Mir S, Alam MZ, Wan Nawawi WM.
    J Oleo Sci; 2014 Jan; 63(8):795-804. PubMed ID: 25007747
    [Abstract] [Full Text] [Related]

  • 31. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574.
    Mutalik SR, Vaidya BK, Joshi RM, Desai KM, Nene SN.
    Bioresour Technol; 2008 Nov; 99(16):7875-80. PubMed ID: 18511269
    [Abstract] [Full Text] [Related]

  • 32. Biosurfactant production by Serratia rubidaea SNAU02 isolated from hydrocarbon contaminated soil and its physico-chemical characterization.
    Nalini S, Parthasarathi R.
    Bioresour Technol; 2013 Nov; 147():619-622. PubMed ID: 23993704
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG, Mamidyala SK, Sujitha P, Muluka H, Akkenapally S.
    Biotechnol Prog; 2012 Nov; 28(6):1507-16. PubMed ID: 22961871
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.
    Ebadipour N, Lotfabad TB, Yaghmaei S, RoostaAzad R.
    Prep Biochem Biotechnol; 2016 Nov; 46(1):30-8. PubMed ID: 25748124
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.