These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 31354780

  • 1. Estimating the Aboveground Carbon Density of Coniferous Forests by Combining Airborne LiDAR and Allometry Models at Plot Level.
    Hao H, Li W, Zhao X, Chang Q, Zhao P.
    Front Plant Sci; 2019; 10():917. PubMed ID: 31354780
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR.
    Spriggs RA, Vanderwel MC, Jones TA, Caspersen JP, Coomes DA.
    PLoS One; 2019; 14(4):e0215238. PubMed ID: 31002682
    [Abstract] [Full Text] [Related]

  • 5. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F, Tan C, Lei PF.
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne LiDAR.
    Nguyen HT, Hutyra LR, Hardiman BS, Raciti SM.
    Ecol Appl; 2016 Mar; 26(2):587-601. PubMed ID: 27209797
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Tropical tree size-frequency distributions from airborne lidar.
    Ferraz A, Saatchi SS, Longo M, Clark DB.
    Ecol Appl; 2020 Oct; 30(7):e02154. PubMed ID: 32347996
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+.
    Leitold V, Keller M, Morton DC, Cook BD, Shimabukuro YE.
    Carbon Balance Manag; 2015 Dec; 10(1):3. PubMed ID: 25685178
    [Abstract] [Full Text] [Related]

  • 15. A macroecological analysis of SERA derived forest heights and implications for forest volume remote sensing.
    Brolly M, Woodhouse IH, Niklas KJ, Hammond ST.
    PLoS One; 2012 Dec; 7(3):e33927. PubMed ID: 22457800
    [Abstract] [Full Text] [Related]

  • 16. Forest degradation and biomass loss along the Chocó region of Colombia.
    Meyer V, Saatchi S, Ferraz A, Xu L, Duque A, García M, Chave J.
    Carbon Balance Manag; 2019 Mar 23; 14(1):2. PubMed ID: 30904964
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.
    Levick SR, Hessenmöller D, Schulze ED.
    Carbon Balance Manag; 2016 Dec 23; 11(1):7. PubMed ID: 27330548
    [Abstract] [Full Text] [Related]

  • 19. Estimating above-ground biomass of subtropical forest using airborne LiDAR in Hong Kong.
    Chan EPY, Fung T, Wong FKK.
    Sci Rep; 2021 Jan 18; 11(1):1751. PubMed ID: 33462354
    [Abstract] [Full Text] [Related]

  • 20. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation.
    Almeida DRA, Stark SC, Schietti J, Camargo JLC, Amazonas NT, Gorgens EB, Rosa DM, Smith MN, Valbuena R, Saleska S, Andrade A, Mesquita R, Laurance SG, Laurance WF, Lovejoy TE, Broadbent EN, Shimabukuro YE, Parker GG, Lefsky M, Silva CA, Brancalion PHS.
    Ecol Appl; 2019 Sep 18; 29(6):e01952. PubMed ID: 31206818
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.