These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


224 related items for PubMed ID: 31364377

  • 1. Targeted renal knockdown of Na+/H+ exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila.
    Ghimire S, Terhzaz S, Cabrero P, Romero MF, Davies SA, Dow JAT.
    Am J Physiol Renal Physiol; 2019 Oct 01; 317(4):F930-F940. PubMed ID: 31364377
    [Abstract] [Full Text] [Related]

  • 2. Re: Targeted Renal Knockdown of Na+/H+ Exchanger Regulatory Factor Sip1 Produces Uric Acid Nephrolithiasis in Drosophila.
    Assimos DG.
    J Urol; 2020 Jul 01; 204(1):179. PubMed ID: 32272047
    [No Abstract] [Full Text] [Related]

  • 3. Lead (Pb2+)-induced calcium oxalate crystallization ex vivo is ameliorated via inositol 1,4,5-trisphosphate receptor (InsP3R) knockdown in a Drosophila melanogaster model of nephrolithiasis.
    Branco AJ, Vattamparambil AS, Landry GM.
    Environ Toxicol Pharmacol; 2021 Oct 01; 87():103695. PubMed ID: 34171488
    [Abstract] [Full Text] [Related]

  • 4. Transporters and tubule crystals in the insect Malpighian tubule.
    Reynolds CJ, Turin DR, Romero MF.
    Curr Opin Insect Sci; 2021 Oct 01; 47():82-89. PubMed ID: 34044181
    [Abstract] [Full Text] [Related]

  • 5. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis.
    Chen YH, Liu HP, Chen HY, Tsai FJ, Chang CH, Lee YJ, Lin WY, Chen WC.
    Kidney Int; 2011 Aug 01; 80(4):369-77. PubMed ID: 21451462
    [Abstract] [Full Text] [Related]

  • 6. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation.
    Chung VY, Turney BW.
    BMC Urol; 2017 Nov 28; 17(1):109. PubMed ID: 29183349
    [Abstract] [Full Text] [Related]

  • 7. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster.
    Chahine S, Campos A, O'Donnell MJ.
    J Exp Biol; 2012 Aug 01; 215(Pt 15):2601-10. PubMed ID: 22786636
    [Abstract] [Full Text] [Related]

  • 8. Ecdysone regulates morphogenesis and function of Malpighian tubules in Drosophila melanogaster through EcR-B2 isoform.
    Gautam NK, Verma P, Tapadia MG.
    Dev Biol; 2015 Feb 15; 398(2):163-76. PubMed ID: 25476260
    [Abstract] [Full Text] [Related]

  • 9. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules.
    Chung VY, Konietzny R, Charles P, Kessler B, Fischer R, Turney BW.
    Fly (Austin); 2016 Apr 02; 10(2):91-100. PubMed ID: 27064297
    [Abstract] [Full Text] [Related]

  • 10. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis.
    Hirata T, Cabrero P, Berkholz DS, Bondeson DP, Ritman EL, Thompson JR, Dow JA, Romero MF.
    Am J Physiol Renal Physiol; 2012 Dec 01; 303(11):F1555-62. PubMed ID: 22993075
    [Abstract] [Full Text] [Related]

  • 11. The Drosophila Malpighian tubule as a model for mammalian tubule function.
    Rodan AR.
    Curr Opin Nephrol Hypertens; 2019 Sep 01; 28(5):455-464. PubMed ID: 31268918
    [Abstract] [Full Text] [Related]

  • 12. Evidence for a role of PDZ domain-containing proteins to mediate hypophosphatemia in calcium stone formers.
    Bergsland KJ, Coe FL, Parks JH, Asplin JR, Worcester EM.
    Nephrol Dial Transplant; 2018 May 01; 33(5):759-770. PubMed ID: 29126251
    [Abstract] [Full Text] [Related]

  • 13. Protein expression of urate transporters in renal tissue of patients with uric acid nephrolithiasis.
    Fu W, Li Q, Yao J, Zheng J, Lang L, Li W, Yan J.
    Cell Biochem Biophys; 2014 Sep 01; 70(1):449-54. PubMed ID: 24723238
    [Abstract] [Full Text] [Related]

  • 14. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in Drosophila renal tubules.
    Rose E, Lee D, Xiao E, Zhao W, Wee M, Cohen J, Bergwitz C.
    Sci Rep; 2019 Jun 19; 9(1):8798. PubMed ID: 31217461
    [Abstract] [Full Text] [Related]

  • 15. Drosophila: a fruitful model for calcium oxalate nephrolithiasis?
    Knauf F, Preisig PA.
    Kidney Int; 2011 Aug 19; 80(4):327-9. PubMed ID: 21799502
    [Abstract] [Full Text] [Related]

  • 16. Sip1, the Drosophila orthologue of EBP50/NHERF1, functions with the sterile 20 family kinase Slik to regulate Moesin activity.
    Hughes SC, Formstecher E, Fehon RG.
    J Cell Sci; 2010 Apr 01; 123(Pt 7):1099-107. PubMed ID: 20215404
    [Abstract] [Full Text] [Related]

  • 17. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules.
    Yin S, Qin Q, Zhou B.
    BMC Biol; 2017 Feb 14; 15(1):12. PubMed ID: 28196538
    [Abstract] [Full Text] [Related]

  • 18. Drosophila melanogaster as an emerging translational model of human nephrolithiasis.
    Miller J, Chi T, Kapahi P, Kahn AJ, Kim MS, Hirata T, Romero MF, Dow JA, Stoller ML.
    J Urol; 2013 Nov 14; 190(5):1648-56. PubMed ID: 23500641
    [Abstract] [Full Text] [Related]

  • 19. Treatment of patients with uric acid stones.
    Heilberg IP.
    Urolithiasis; 2016 Feb 14; 44(1):57-63. PubMed ID: 26645868
    [Abstract] [Full Text] [Related]

  • 20. Tissue-specific regulation of sodium/proton exchanger isoform 3 activity in Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) null mice. cAMP inhibition is differentially dependent on NHERF1 and exchange protein directly activated by cAMP in ileum versus proximal tubule.
    Murtazina R, Kovbasnjuk O, Zachos NC, Li X, Chen Y, Hubbard A, Hogema BM, Steplock D, Seidler U, Hoque KM, Tse CM, De Jonge HR, Weinman EJ, Donowitz M.
    J Biol Chem; 2007 Aug 24; 282(34):25141-51. PubMed ID: 17580307
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.