These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 31365142
1. Release of Munitions Constituents in Aquatic Environments Under Realistic Scenarios and Validation of Polar Organic Chemical Integrative Samplers for Monitoring. Lotufo GR, George RD, Belden JB, Woodley C, Smith DL, Rosen G. Environ Toxicol Chem; 2019 Nov; 38(11):2383-2391. PubMed ID: 31365142 [Abstract] [Full Text] [Related]
2. Field validation of POCIS for monitoring at underwater munitions sites. Rosen G, Lotufo GR, George RD, Wild B, Rabalais LK, Morrison S, Belden JB. Environ Toxicol Chem; 2018 Aug; 37(8):2257-2267. PubMed ID: 29687474 [Abstract] [Full Text] [Related]
3. Environmental Characterization of Underwater Munitions Constituents at a Former Military Training Range. Rosen G, Lotufo GR, Belden JB, George RD. Environ Toxicol Chem; 2022 Feb; 41(2):275-286. PubMed ID: 33978266 [Abstract] [Full Text] [Related]
4. Investigation of polar organic chemical integrative sampler (POCIS) flow rate dependence for munition constituents in underwater environments. Lotufo GR, George RD, Belden JB, Woodley CM, Smith DL, Rosen G. Environ Monit Assess; 2018 Feb 24; 190(3):171. PubMed ID: 29478103 [Abstract] [Full Text] [Related]
5. Application of POCIS for exposure assessment of munitions constituents during constant and fluctuating exposure. Belden JB, Lotufo GR, Biedenbach JM, Sieve KK, Rosen G. Environ Toxicol Chem; 2015 May 24; 34(5):959-67. PubMed ID: 25475692 [Abstract] [Full Text] [Related]
6. Monitoring of explosive residues in lake-bottom water using Polar Organic Chemical Integrative Sampler (POCIS) and chemcatcher: determination of transfer kinetics through Polyethersulfone (PES) membrane is crucial. Estoppey N, Mathieu J, Gascon Diez E, Sapin E, Delémont O, Esseiva P, de Alencastro LF, Coudret S, Folly P. Environ Pollut; 2019 Sep 24; 252(Pt A):767-776. PubMed ID: 31200202 [Abstract] [Full Text] [Related]
7. Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems. Warren JK, Vlahos P, Smith R, Tobias C. Environ Toxicol Chem; 2018 Jul 24; 37(7):1990-1997. PubMed ID: 29603346 [Abstract] [Full Text] [Related]
8. Exploring the detection of microcystin-LR using polar organic chemical integrative samplers (POCIS). Brophy MJ, Mackie AL, Park Y, Gagnon GA. Environ Sci Process Impacts; 2019 Apr 17; 21(4):659-666. PubMed ID: 30899924 [Abstract] [Full Text] [Related]
9. Explosives compounds from sea-dumped relic munitions accumulate in marine biota. Beck AJ, Gledhill M, Kampmeier M, Feng C, Schlosser C, Greinert J, Achterberg EP. Sci Total Environ; 2022 Feb 01; 806(Pt 4):151266. PubMed ID: 34757098 [Abstract] [Full Text] [Related]
10. Effects of hydrodynamic conditions and temperature on polar organic chemical integrative sampling rates. Djomte VT, Taylor RB, Chen S, Booij K, Chambliss CK. Environ Toxicol Chem; 2018 Sep 01; 37(9):2331-2339. PubMed ID: 29978495 [Abstract] [Full Text] [Related]
11. Aquatic toxicity of photo-degraded insensitive munition 101 (IMX-101) constituents. Kennedy AJ, Poda AR, Melby NL, Moores LC, Jordan SM, Gust KA, Bednar AJ. Environ Toxicol Chem; 2017 Aug 01; 36(8):2050-2057. PubMed ID: 28059482 [Abstract] [Full Text] [Related]
12. In Situ Measurements of Explosive Compound Dissolution Fluxes from Exposed Munition Material in the Baltic Sea. Beck AJ, van der Lee EM, Eggert A, Stamer B, Gledhill M, Schlosser C, Achterberg EP. Environ Sci Technol; 2019 May 21; 53(10):5652-5660. PubMed ID: 30997802 [Abstract] [Full Text] [Related]
13. Munition constituents: Preliminary sediment screening criteria for the protection of marine benthic invertebrates. Pascoe GA, Kroeger K, Leisle D, Feldpausch RJ. Chemosphere; 2010 Oct 21; 81(6):807-16. PubMed ID: 20674958 [Abstract] [Full Text] [Related]
14. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. Li H, Vermeirssen EL, Helm PA, Metcalfe CD. Environ Toxicol Chem; 2010 Nov 21; 29(11):2461-9. PubMed ID: 20865700 [Abstract] [Full Text] [Related]
15. Temperature dependence on the pesticide sampling rate of polar organic chemical integrative samplers (POCIS). Yabuki Y, Nagai T, Inao K, Ono J, Aiko N, Ohtsuka N, Tanaka H, Tanimori S. Biosci Biotechnol Biochem; 2016 Oct 21; 80(10):2069-75. PubMed ID: 27305429 [Abstract] [Full Text] [Related]
16. Comparative Evaluation of the Polar Organic Chemical Integrative Sampler in Two Types of Validation Systems Simulating Peak Concentration Events. Noro K, Vermeirssen ELM, Banno A, Ono J, Yabuki Y. Environ Toxicol Chem; 2021 Nov 21; 40(11):3010-3018. PubMed ID: 34506633 [Abstract] [Full Text] [Related]
17. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies. Ariyarathna T, Vlahos P, Tobias C, Smith R. Environ Toxicol Chem; 2016 Jan 21; 35(1):47-55. PubMed ID: 26178383 [Abstract] [Full Text] [Related]
18. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM, Douglas TA, Walsh ME, Trainor TP. Chemosphere; 2011 Aug 21; 84(8):1058-65. PubMed ID: 21601233 [Abstract] [Full Text] [Related]
19. Removal rates of dissolved munitions compounds in seawater. Smith RW, Vlahos P, Tobias C, Ballentine M, Ariyarathna T, Cooper C. Chemosphere; 2013 Aug 21; 92(8):898-904. PubMed ID: 23623038 [Abstract] [Full Text] [Related]
20. Polar organic chemical integrative samplers as an effective tool for chemical monitoring of surface waters - Results from one-year monitoring in France. Mathon B, Ferreol M, Togola A, Lardy-Fontan S, Dabrin A, Allan IJ, Staub PF, Mazzella N, Miège C. Sci Total Environ; 2022 Jun 10; 824():153549. PubMed ID: 35114228 [Abstract] [Full Text] [Related] Page: [Next] [New Search]