These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 31370116

  • 21. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY.
    Microb Cell Fact; 2016 Oct 07; 15(1):174. PubMed ID: 27717386
    [Abstract] [Full Text] [Related]

  • 22. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB.
    Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H.
    J Gen Appl Microbiol; 2014 Oct 07; 60(3):112-8. PubMed ID: 25008167
    [Abstract] [Full Text] [Related]

  • 23. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply.
    Zhan M, Kan B, Dong J, Xu G, Han R, Ni Y.
    J Ind Microbiol Biotechnol; 2019 Jan 07; 46(1):45-54. PubMed ID: 30446890
    [Abstract] [Full Text] [Related]

  • 24. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum.
    Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ.
    Appl Environ Microbiol; 2007 Apr 07; 73(7):2079-84. PubMed ID: 17293513
    [Abstract] [Full Text] [Related]

  • 25. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
    Pérez-García F, Max Risse J, Friehs K, Wendisch VF.
    Biotechnol J; 2017 Jul 07; 12(7):. PubMed ID: 28169491
    [Abstract] [Full Text] [Related]

  • 26. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum.
    Hwang GH, Cho JY.
    J Ind Microbiol Biotechnol; 2012 Dec 07; 39(12):1869-74. PubMed ID: 22987028
    [Abstract] [Full Text] [Related]

  • 27. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production.
    Wang YY, Shi K, Chen P, Zhang F, Xu JZ, Zhang WG.
    J Ind Microbiol Biotechnol; 2020 Jul 07; 47(6-7):485-495. PubMed ID: 32535763
    [Abstract] [Full Text] [Related]

  • 28. Enhanced succinic acid production in Corynebacterium glutamicum with increasing the available NADH supply and glucose consumption rate by decreasing H(+)-ATPase activity.
    Xu H, Zhou Z, Wang C, Chen Z, Cai H.
    Biotechnol Lett; 2016 Jul 07; 38(7):1181-6. PubMed ID: 27053082
    [Abstract] [Full Text] [Related]

  • 29. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum.
    Shi F, Zhang M, Li Y, Fang H.
    Enzyme Microb Technol; 2018 Aug 07; 115():1-8. PubMed ID: 29859597
    [Abstract] [Full Text] [Related]

  • 30. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z, Wang C, Chen Y, Zhang K, Xu H, Cai H, Chen Z.
    Biotechnol Prog; 2015 Aug 07; 31(1):12-9. PubMed ID: 25311136
    [Abstract] [Full Text] [Related]

  • 31. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X, Zhao Y, Hu J, Li Y, Wang X.
    Enzyme Microb Technol; 2016 Nov 07; 93-94():70-78. PubMed ID: 27702487
    [Abstract] [Full Text] [Related]

  • 32. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
    Holátko J, Elisáková V, Prouza M, Sobotka M, Nesvera J, Pátek M.
    J Biotechnol; 2009 Feb 05; 139(3):203-10. PubMed ID: 19121344
    [Abstract] [Full Text] [Related]

  • 33. Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics.
    Zhang H, Li Y, Wang C, Wang X.
    Sci Rep; 2018 Feb 26; 8(1):3632. PubMed ID: 29483542
    [Abstract] [Full Text] [Related]

  • 34. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum.
    Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M.
    Biotechnol Prog; 2010 Feb 26; 26(2):361-71. PubMed ID: 20014412
    [Abstract] [Full Text] [Related]

  • 35. Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production.
    Marienhagen J, Eggeling L.
    Appl Environ Microbiol; 2008 Dec 26; 74(24):7457-62. PubMed ID: 18931286
    [Abstract] [Full Text] [Related]

  • 36. Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum.
    Bartek T, Zönnchen E, Klein B, Gerstmeir R, Makus P, Lang S, Oldiges M.
    J Ind Microbiol Biotechnol; 2010 Mar 26; 37(3):263-70. PubMed ID: 20012552
    [Abstract] [Full Text] [Related]

  • 37. Construction of a novel expression system for use in Corynebacterium glutamicum.
    Hu J, Li Y, Zhang H, Tan Y, Wang X.
    Plasmid; 2014 Sep 26; 75():18-26. PubMed ID: 25108235
    [Abstract] [Full Text] [Related]

  • 38. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ.
    Appl Microbiol Biotechnol; 2008 Jun 26; 79(3):471-9. PubMed ID: 18379776
    [Abstract] [Full Text] [Related]

  • 39. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ.
    Appl Microbiol Biotechnol; 2007 Sep 26; 76(3):615-23. PubMed ID: 17333167
    [Abstract] [Full Text] [Related]

  • 40. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
    Ma W, Wang J, Li Y, Hu X, Shi F, Wang X.
    Biotechnol Appl Biochem; 2016 Nov 26; 63(6):877-885. PubMed ID: 27010514
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.