These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 31370116
41. [Effect of amn gene deletion on Corynebacterium glutamicum S9114 metabolism]. Mei J, Liu L, Wu J. Wei Sheng Wu Xue Bao; 2015 Dec 04; 55(12):1568-75. PubMed ID: 27101699 [Abstract] [Full Text] [Related]
42. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F, Li K, Huan X, Wang X. Appl Biochem Biotechnol; 2013 Sep 04; 171(2):504-21. PubMed ID: 23868449 [Abstract] [Full Text] [Related]
43. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Zhang B, Gao G, Chu XH, Ye BC. Bioresour Technol; 2019 Jul 04; 284():204-213. PubMed ID: 30939382 [Abstract] [Full Text] [Related]
44. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S. Appl Environ Microbiol; 2005 Jan 04; 71(1):207-13. PubMed ID: 15640189 [Abstract] [Full Text] [Related]
45. Pyruvate kinase deletion as an effective phenotype to enhance lysine production in Corynebacterium glutamicum ATCC13032: Redirecting the carbon flow to a precursor metabolite. Yanase M, Aikoh T, Sawada K, Ogura K, Hagiwara T, Imai K, Wada M, Yokota A. J Biosci Bioeng; 2016 Aug 04; 122(2):160-7. PubMed ID: 26983943 [Abstract] [Full Text] [Related]
46. (L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Hou X, Chen X, Zhang Y, Qian H, Zhang W. Amino Acids; 2012 Dec 04; 43(6):2301-11. PubMed ID: 22552525 [Abstract] [Full Text] [Related]
47. Increasing L-lysine production in Corynebacterium glutamicum by engineering amino acid transporters. Xiao J, Wang D, Wang L, Jiang Y, Xue L, Sui S, Wang J, Guo C, Wang R, Wang J, Li N, Fan H, Lv M. Amino Acids; 2020 Oct 04; 52(10):1363-1374. PubMed ID: 33021685 [Abstract] [Full Text] [Related]
48. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation. Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G. Biotechnol J; 2017 Oct 04; 12(10):. PubMed ID: 28869338 [Abstract] [Full Text] [Related]
49. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J. Metab Eng; 2015 Nov 04; 32():184-194. PubMed ID: 26453945 [Abstract] [Full Text] [Related]
50. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Liu Y, Wang X, Zhan J, Hu J. Enzyme Microb Technol; 2019 Oct 04; 129():109357. PubMed ID: 31307581 [Abstract] [Full Text] [Related]
51. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum. Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, Takors R, Blombach B. Metab Eng; 2018 May 04; 47():31-41. PubMed ID: 29522826 [Abstract] [Full Text] [Related]
52. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC). Denina I, Paegle L, Prouza M, Holátko J, Pátek M, Nesvera J, Ruklisha M. J Ind Microbiol Biotechnol; 2010 Jul 04; 37(7):689-99. PubMed ID: 20364396 [Abstract] [Full Text] [Related]
53. A Novel Corynebacterium glutamicum l-Glutamate Exporter. Wang Y, Cao G, Xu D, Fan L, Wu X, Ni X, Zhao S, Zheng P, Sun J, Ma Y. Appl Environ Microbiol; 2018 Mar 15; 84(6):. PubMed ID: 29330181 [Abstract] [Full Text] [Related]
54. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. Chen SL, Liu TS, Zhang WG, Xu JZ. Int Microbiol; 2023 Jan 15; 26(1):11-24. PubMed ID: 35925494 [Abstract] [Full Text] [Related]
55. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation. Tsuge Y, Uematsu K, Yamamoto S, Suda M, Yukawa H, Inui M. Appl Microbiol Biotechnol; 2015 Jul 15; 99(13):5573-82. PubMed ID: 25808520 [Abstract] [Full Text] [Related]
56. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Wang HD, Xu JZ, Zhang WG. Appl Microbiol Biotechnol; 2023 Jun 15; 107(11):3593-3603. PubMed ID: 37097502 [Abstract] [Full Text] [Related]
57. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F, Huan X, Wang X, Ning J. Enzyme Microb Technol; 2012 Jul 15; 51(2):73-80. PubMed ID: 22664190 [Abstract] [Full Text] [Related]
58. Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF. Appl Microbiol Biotechnol; 2010 Jun 15; 87(2):583-93. PubMed ID: 20180116 [Abstract] [Full Text] [Related]
59. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Appl Microbiol Biotechnol; 2011 Dec 15; 92(5):985-96. PubMed ID: 21796382 [Abstract] [Full Text] [Related]
60. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar. Xu JZ, Ruan HZ, Yu HB, Liu LM, Zhang W. Microb Cell Fact; 2020 Feb 18; 19(1):39. PubMed ID: 32070345 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]