These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 31370116

  • 61. The amrG1 gene is involved in the activation of acetate in Corynebacterium glutamicum.
    Ruan H, Gerstmeir R, Schnicke S, Eikmanns BJ.
    Sci China C Life Sci; 2005 Apr; 48(2):97-105. PubMed ID: 15986882
    [Abstract] [Full Text] [Related]

  • 62. Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
    Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM.
    Appl Environ Microbiol; 2010 Jan; 76(1):370-4. PubMed ID: 19880641
    [Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY, Lee J, Lee SY.
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [Abstract] [Full Text] [Related]

  • 65.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 66. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.
    Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S.
    Microb Cell Fact; 2017 May 22; 16(1):88. PubMed ID: 28532451
    [Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.
    Sasaki M, Teramoto H, Inui M, Yukawa H.
    Appl Microbiol Biotechnol; 2011 Mar 22; 89(6):1905-16. PubMed ID: 21125267
    [Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70. Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux.
    Wang YY, Zhang F, Xu JZ, Zhang WG, Chen XL, Liu LM.
    Int J Mol Sci; 2019 Apr 24; 20(8):. PubMed ID: 31022947
    [Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73. A comparative proteomic approach to understand the adaptations of an H+ -ATPase-defective mutant of Corynebacterium glutamicum ATCC14067 to energy deficiencies.
    Li L, Wada M, Yokota A.
    Proteomics; 2007 Sep 24; 7(18):3348-57. PubMed ID: 17849411
    [Abstract] [Full Text] [Related]

  • 74. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F, Ziert C, Risse JM, Wendisch VF.
    J Biotechnol; 2017 Sep 20; 258():59-68. PubMed ID: 28478080
    [Abstract] [Full Text] [Related]

  • 75. Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression.
    Park SY, Moon MW, Subhadra B, Lee JK.
    FEMS Microbiol Lett; 2010 Mar 20; 304(2):107-15. PubMed ID: 20377641
    [Abstract] [Full Text] [Related]

  • 76. Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate.
    Kim EM, Um Y, Bott M, Woo HM.
    FEMS Microbiol Lett; 2015 Oct 20; 362(19):. PubMed ID: 26363018
    [Abstract] [Full Text] [Related]

  • 77. Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum.
    Wang J, Wen B, Wang J, Xu Q, Zhang C, Chen N, Xie X.
    Appl Biochem Biotechnol; 2013 Sep 20; 171(1):20-30. PubMed ID: 23813403
    [Abstract] [Full Text] [Related]

  • 78. Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum.
    Zou Y, Chen T, Feng L, Zhang S, Xing D, Wang Z.
    Biotechnol Lett; 2017 Sep 20; 39(9):1369-1374. PubMed ID: 28536938
    [Abstract] [Full Text] [Related]

  • 79.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 80. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum.
    Shi F, Zhang M, Li Y.
    World J Microbiol Biotechnol; 2017 Jun 20; 33(6):122. PubMed ID: 28534111
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.