These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 31371510

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW, Takatsu H.
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [Abstract] [Full Text] [Related]

  • 3. Electrogenic reaction step and phospholipid translocation pathway of the mammalian P4-ATPase ATP8A2.
    Tadini-Buoninsegni F, Mikkelsen SA, Mogensen LS, Holm R, Molday RS, Andersen JP.
    FEBS Lett; 2023 Feb; 597(4):495-503. PubMed ID: 35945663
    [Abstract] [Full Text] [Related]

  • 4. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y, Takar M, Best JT, Graham TR.
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases.
    Tadini-Buoninsegni F.
    Molecules; 2020 Sep 11; 25(18):. PubMed ID: 32933017
    [Abstract] [Full Text] [Related]

  • 7. Critical roles of isoleucine-364 and adjacent residues in a hydrophobic gate control of phospholipid transport by the mammalian P4-ATPase ATP8A2.
    Vestergaard AL, Coleman JA, Lemmin T, Mikkelsen SA, Molday LL, Vilsen B, Molday RS, Dal Peraro M, Andersen JP.
    Proc Natl Acad Sci U S A; 2014 Apr 08; 111(14):E1334-43. PubMed ID: 24706822
    [Abstract] [Full Text] [Related]

  • 8. The transport mechanism of P4 ATPase lipid flippases.
    López-Marqués RL, Gourdon P, Günther Pomorski T, Palmgren M.
    Biochem J; 2020 Oct 16; 477(19):3769-3790. PubMed ID: 33045059
    [Abstract] [Full Text] [Related]

  • 9. Disease mutations reveal residues critical to the interaction of P4-ATPases with lipid substrates.
    Gantzel RH, Mogensen LS, Mikkelsen SA, Vilsen B, Molday RS, Vestergaard AL, Andersen JP.
    Sci Rep; 2017 Sep 05; 7(1):10418. PubMed ID: 28874751
    [Abstract] [Full Text] [Related]

  • 10. P4-ATPases: lipid flippases in cell membranes.
    Lopez-Marques RL, Theorin L, Palmgren MG, Pomorski TG.
    Pflugers Arch; 2014 Jul 05; 466(7):1227-40. PubMed ID: 24077738
    [Abstract] [Full Text] [Related]

  • 11. C-terminus of the P4-ATPase ATP8A2 functions in protein folding and regulation of phospholipid flippase activity.
    Chalat M, Moleschi K, Molday RS.
    Mol Biol Cell; 2017 Feb 01; 28(3):452-462. PubMed ID: 27932490
    [Abstract] [Full Text] [Related]

  • 12. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD, Graham TR.
    Proc Natl Acad Sci U S A; 2012 Feb 07; 109(6):E290-8. PubMed ID: 22308393
    [Abstract] [Full Text] [Related]

  • 13. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H, Tanaka G, Segawa K, Suzuki J, Nagata S, Nakayama K, Shin HW.
    J Biol Chem; 2014 Nov 28; 289(48):33543-56. PubMed ID: 25315773
    [Abstract] [Full Text] [Related]

  • 14. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION.
    Ansari IU, Longacre MJ, Paulusma CC, Stoker SW, Kendrick MA, MacDonald MJ.
    J Biol Chem; 2015 Sep 18; 290(38):23110-23. PubMed ID: 26240149
    [Abstract] [Full Text] [Related]

  • 15. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas.
    Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS.
    Front Physiol; 2016 Sep 18; 7():275. PubMed ID: 27458383
    [Abstract] [Full Text] [Related]

  • 16. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M, Huang Y, Graham TR.
    J Lipid Res; 2019 May 18; 60(5):1032-1042. PubMed ID: 30824614
    [Abstract] [Full Text] [Related]

  • 17. The lipid head group is the key element for substrate recognition by the P4 ATPase ALA2: a phosphatidylserine flippase.
    Theorin L, Faxén K, Sørensen DM, Migotti R, Dittmar G, Schiller J, Daleke DL, Palmgren M, López-Marqués RL, Günther Pomorski T.
    Biochem J; 2019 Mar 06; 476(5):783-794. PubMed ID: 30755463
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M, Wu Y, Graham TR.
    J Biol Chem; 2016 Jul 22; 291(30):15727-39. PubMed ID: 27235400
    [Abstract] [Full Text] [Related]

  • 20. P4 ATPases: flippases in health and disease.
    van der Mark VA, Elferink RP, Paulusma CC.
    Int J Mol Sci; 2013 Apr 11; 14(4):7897-922. PubMed ID: 23579954
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.