These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1802 related items for PubMed ID: 31373061

  • 1. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y.
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [Abstract] [Full Text] [Related]

  • 2. Training a neural network for Gibbs and noise removal in diffusion MRI.
    Muckley MJ, Ades-Aron B, Papaioannou A, Lemberskiy G, Solomon E, Lui YW, Sodickson DK, Fieremans E, Novikov DS, Knoll F.
    Magn Reson Med; 2021 Jan; 85(1):413-428. PubMed ID: 32662910
    [Abstract] [Full Text] [Related]

  • 3. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI.
    Lee HH, Novikov DS, Fieremans E.
    Magn Reson Med; 2021 Nov; 86(5):2733-2750. PubMed ID: 34227142
    [Abstract] [Full Text] [Related]

  • 4. Gibbs ringing in diffusion MRI.
    Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS.
    Magn Reson Med; 2016 Jul; 76(1):301-14. PubMed ID: 26257388
    [Abstract] [Full Text] [Related]

  • 5. Gibbs-ringing artifact removal based on local subvoxel-shifts.
    Kellner E, Dhital B, Kiselev VG, Reisert M.
    Magn Reson Med; 2016 Nov; 76(5):1574-1581. PubMed ID: 26745823
    [Abstract] [Full Text] [Related]

  • 6. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, Kühn JP, Onishi H, Motosugi U.
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [Abstract] [Full Text] [Related]

  • 7. Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.
    Yuan N, Wang L, Ye C, Deng Z, Zhang J, Zhu Y.
    Med Phys; 2023 Oct; 50(10):6137-6150. PubMed ID: 36775901
    [Abstract] [Full Text] [Related]

  • 8. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM).
    Safari M, Yang X, Fatemi A, Archambault L.
    Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583
    [Abstract] [Full Text] [Related]

  • 9. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K, Kim D, Kim B, Park H.
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI, Tamam NM.
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [Abstract] [Full Text] [Related]

  • 13. A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity.
    Archibald R, Gelb A.
    IEEE Trans Med Imaging; 2002 Apr; 21(4):305-19. PubMed ID: 12022619
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. k-Space deep learning for reference-free EPI ghost correction.
    Lee J, Han Y, Ryu JK, Park JY, Ye JC.
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [Abstract] [Full Text] [Related]

  • 16. Correction of Motion Artifacts Using a Multiscale Fully Convolutional Neural Network.
    Sommer K, Saalbach A, Brosch T, Hall C, Cross NM, Andre JB.
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):416-423. PubMed ID: 32054615
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 91.