These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 31374391

  • 21. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.
    Yang J, Meng L, Guo L.
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5051-5062. PubMed ID: 28819708
    [Abstract] [Full Text] [Related]

  • 22. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain).
    Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E.
    Environ Pollut; 2019 Jan; 244():165-173. PubMed ID: 30326388
    [Abstract] [Full Text] [Related]

  • 23. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards.
    Puigserver D, Herrero J, Torres M, Cortés A, Nijenhuis I, Kuntze K, Parker BL, Carmona JM.
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18724-41. PubMed ID: 27314420
    [Abstract] [Full Text] [Related]

  • 24. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation.
    Wu YJ, Liu PG, Hsu YS, Whang LM, Lin TF, Hung WN, Cho KC.
    Chemosphere; 2019 Oct; 233():697-704. PubMed ID: 31195274
    [Abstract] [Full Text] [Related]

  • 25. Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities.
    Mao X, Polasko A, Alvarez-Cohen L.
    Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159790
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater.
    Nielsen RB, Keasling JD.
    Biotechnol Bioeng; 1999 Jan 20; 62(2):160-5. PubMed ID: 10099525
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Dual carbon-chlorine stable isotope investigation of sources and fate of chlorinated ethenes in contaminated groundwater.
    Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R, Pancost RD, Macháčková J, Gustafsson Ö.
    Environ Sci Technol; 2012 Oct 16; 46(20):10918-25. PubMed ID: 22989309
    [Abstract] [Full Text] [Related]

  • 30. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
    Cupples AM, Spormann AM, McCarty PL.
    Environ Sci Technol; 2004 Sep 15; 38(18):4768-74. PubMed ID: 15487786
    [Abstract] [Full Text] [Related]

  • 31. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater.
    Bennett P, Gandhi D, Warner S, Bussey J.
    J Hazard Mater; 2007 Nov 19; 149(3):568-73. PubMed ID: 17689011
    [Abstract] [Full Text] [Related]

  • 32. Tetrachloroethene conversion to ethene by a Dehalococcoides-containing enrichment culture from Bitterfeld.
    Cichocka D, Nikolausz M, Haest PJ, Nijenhuis I.
    FEMS Microbiol Ecol; 2010 May 19; 72(2):297-310. PubMed ID: 20507364
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Decoupling Fe0 Application and Bioaugmentation in Space and Time Enables Microbial Reductive Dechlorination of Trichloroethene to Ethene: Evidence from Soil Columns.
    Mohana Rangan S, Rao S, Robles A, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado AG.
    Environ Sci Technol; 2023 Mar 14; 57(10):4167-4179. PubMed ID: 36866930
    [Abstract] [Full Text] [Related]

  • 35. Higher thermal remediation temperature facilitates the sequential bioaugmented reductive dechlorination.
    Huang W, Cao L, Ge R, Wan Z, Zheng D, Li F, Li G, Zhang F.
    J Hazard Mater; 2024 Aug 15; 475():134825. PubMed ID: 38876014
    [Abstract] [Full Text] [Related]

  • 36. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms.
    Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC.
    Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003
    [Abstract] [Full Text] [Related]

  • 37. Further biogeochemical characterization of a trichloroethene-contaminated fractured dolomite aquifer: electron source and microbial communities involved in reductive dechlorination.
    Hohnstock-Ashe AM, Plummer SM, Yager RM, Baveye P, Madsen EL.
    Environ Sci Technol; 2001 Nov 15; 35(22):4449-56. PubMed ID: 11757600
    [Abstract] [Full Text] [Related]

  • 38. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community.
    Harding-Marjanovic KC, Yi S, Weathers TS, Sharp JO, Sedlak DL, Alvarez-Cohen L.
    Environ Sci Technol; 2016 Apr 05; 50(7):3352-61. PubMed ID: 26894610
    [Abstract] [Full Text] [Related]

  • 39. Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation.
    Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M.
    Chemosphere; 2016 Aug 05; 157():276-85. PubMed ID: 27236848
    [Abstract] [Full Text] [Related]

  • 40. Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G.
    Zhao S, He J.
    FEMS Microbiol Ecol; 2019 Jan 01; 95(1):. PubMed ID: 30339222
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.