These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
378 related items for PubMed ID: 31375492
1. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress. Liu Z, Huang H, Qi M, Wang X, Adebanjo OO, Lu Z. Appl Environ Microbiol; 2019 Oct 01; 85(19):. PubMed ID: 31375492 [Abstract] [Full Text] [Related]
2. pH Stress-Induced Cooperation between Rhodococcus ruber YYL and Bacillus cereus MLY1 in Biodegradation of Tetrahydrofuran. Liu Z, He Z, Huang H, Ran X, Oluwafunmilayo AO, Lu Z. Front Microbiol; 2017 Oct 01; 8():2297. PubMed ID: 29209303 [Abstract] [Full Text] [Related]
3. Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. He Z, Yao Y, Lu Z, Ye Y. Appl Environ Microbiol; 2014 May 01; 80(9):2656-64. PubMed ID: 24532074 [Abstract] [Full Text] [Related]
4. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. Yao Y, Lu Z, Zhu F, Min H, Bian C. J Hazard Mater; 2013 Oct 15; 261():550-8. PubMed ID: 23994653 [Abstract] [Full Text] [Related]
5. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1. Huang H, Wu H, Qi M, Wang H, Lu Z. Microbiol Spectr; 2023 Jun 15; 11(3):e0454122. PubMed ID: 37125924 [Abstract] [Full Text] [Related]
6. Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture. Huang H, Yu H, Qi M, Liu Z, Wang H, Lu Z. Biodegradation; 2019 Dec 15; 30(5-6):467-479. PubMed ID: 31463639 [Abstract] [Full Text] [Related]
7. Isolation, identification and characterization of a novel Rhodococcus sp. strain in biodegradation of tetrahydrofuran and its medium optimization using sequential statistics-based experimental designs. Yao Y, Lv Z, Min H, Lv Z, Jiao H. Bioresour Technol; 2009 Jun 15; 100(11):2762-9. PubMed ID: 19230656 [Abstract] [Full Text] [Related]
8. Efficient electrotransformation of Rhodococcus ruber YYL with abundant extracellular polymeric substances via a cell wall-weakening strategy. Huang H, Liu Z, Qiu Y, Wang X, Wang H, Xiao H, Lu Z. FEMS Microbiol Lett; 2021 May 17; 368(9):. PubMed ID: 33974050 [Abstract] [Full Text] [Related]
9. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M. Biodegradation; 2016 Nov 17; 27(4-6):277-286. PubMed ID: 27623820 [Abstract] [Full Text] [Related]
10. High efficiency degradation of tetrahydrofuran (THF) using a membrane bioreactor: identification of THF-degrading cultures of Pseudonocardia sp. strain M1 and Rhodococcus ruber isolate M2. Daye KJ, Groff JC, Kirpekar AC, Mazumder R. J Ind Microbiol Biotechnol; 2003 Dec 17; 30(12):705-14. PubMed ID: 14666425 [Abstract] [Full Text] [Related]
11. Metabolic cross-feeding between the competent degrader Rhodococcus sp. strain p52 and an incompetent partner during catabolism of dibenzofuran: Understanding the leading and supporting roles. Wang X, Wu Y, Fu C, Zhao W, Li L. J Hazard Mater; 2024 Jun 05; 471():134310. PubMed ID: 38640677 [Abstract] [Full Text] [Related]
12. Isolation, identification, and acetochlor-degrading potential of a novel Rhodococcus sp. MZ-3. Zhang D, Li Z, Qiu J, Ma Y, Zhou S. J Environ Sci Health B; 2016 Oct 02; 51(10):688-694. PubMed ID: 27322942 [Abstract] [Full Text] [Related]
13. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress. He Z, Zhang K, Wang H, Lv Z. Front Microbiol; 2015 Oct 02; 6():438. PubMed ID: 26029182 [Abstract] [Full Text] [Related]
14. Degradation of dioxane, tetrahydrofuran and other cyclic ethers by an environmental Rhodococcus strain. Bernhardt D, Diekmann H. Appl Microbiol Biotechnol; 1991 Oct 02; 36(1):120-3. PubMed ID: 1367773 [Abstract] [Full Text] [Related]
15. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Xiong Y, Mason OU, Lowe A, Zhou C, Chen G, Tang Y. Appl Environ Microbiol; 2019 Jun 01; 85(11):. PubMed ID: 30926731 [Abstract] [Full Text] [Related]
16. Isolation and characterization of an acrylamide-degrading Bacillus cereus. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, Syed MA. J Environ Biol; 2009 Jan 01; 30(1):57-64. PubMed ID: 20112864 [Abstract] [Full Text] [Related]
17. Cross-Feeding between Members of Thauera spp. and Rhodococcus spp. Drives Quinoline-Denitrifying Degradation in a Hypoxic Bioreactor. Wu X, Wu X, Li J, Wu Q, Ma Y, Sui W, Zhao L, Zhang X. mSphere; 2020 Apr 29; 5(2):. PubMed ID: 32350091 [Abstract] [Full Text] [Related]
18. Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Huang H, Qi M, Liu Y, Wang H, Wang X, Qiu Y, Lu Z. Front Microbiol; 2020 Apr 29; 11():594052. PubMed ID: 33362743 [Abstract] [Full Text] [Related]
19. A study of highly efficient phenol biodegradation by a versatile Bacillus cereus ZWB3 on aerobic condition. Zhang J, Zhou X, Zhou Q, Zhang J, Liang J. Water Sci Technol; 2022 Jul 29; 86(2):355-366. PubMed ID: 35906912 [Abstract] [Full Text] [Related]
20. Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber. Ivshina IB, Mukhutdinova AN, Tyumina HA, Vikhareva HV, Suzina NE, El'-Registan GI, Mulyukin AL. Curr Microbiol; 2015 Mar 29; 70(3):307-14. PubMed ID: 25362511 [Abstract] [Full Text] [Related] Page: [Next] [New Search]