These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
663 related items for PubMed ID: 31380340
1. Facile Fabrication of Au Nanoparticles/Tin Oxide/Reduced Graphene Oxide Ternary Nanocomposite and Its High-Performance SF6 Decomposition Components Sensing. Pi S, Zhang X, Cui H, Chen D, Zhang G, Xiao S, Tang J. Front Chem; 2019; 7():476. PubMed ID: 31380340 [Abstract] [Full Text] [Related]
2. Electrospun ZnO-SnO2 Composite Nanofibers and Enhanced Sensing Properties to SF6 Decomposition Byproduct H2S. Lu Z, Zhou Q, Wang C, Wei Z, Xu L, Gui Y. Front Chem; 2018; 6():540. PubMed ID: 30460229 [Abstract] [Full Text] [Related]
3. High Performance Acetylene Sensor with Heterostructure Based on WO₃ Nanolamellae/Reduced Graphene Oxide (rGO) Nanosheets Operating at Low Temperature. Jiang Z, Chen W, Jin L, Cui F, Song Z, Zhu C. Nanomaterials (Basel); 2018 Nov 05; 8(11):. PubMed ID: 30400651 [Abstract] [Full Text] [Related]
4. Construction of ZnO/SnO2 Heterostructure on Reduced Graphene Oxide for Enhanced Nitrogen Dioxide Sensitive Performances at Room Temperature. Wang Z, Gao S, Fei T, Liu S, Zhang T. ACS Sens; 2019 Aug 23; 4(8):2048-2057. PubMed ID: 31262171 [Abstract] [Full Text] [Related]
5. Ultralow detection limit and ultrafast response/recovery of the H2 gas sensor based on Pd-doped rGO/ZnO-SnO2 from hydrothermal synthesis. Zhang X, Sun J, Tang K, Wang H, Chen T, Jiang K, Zhou T, Quan H, Guo R. Microsyst Nanoeng; 2022 Aug 23; 8():67. PubMed ID: 35721374 [Abstract] [Full Text] [Related]
6. The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite. Wang Z, Jia Z, Li Q, Zhang X, Sun W, Sun J, Liu B, Ha B. J Colloid Interface Sci; 2019 Mar 01; 537():228-237. PubMed ID: 30445351 [Abstract] [Full Text] [Related]
7. A Highly Sensitive Room Temperature CO2 Gas Sensor Based on SnO2-rGO Hybrid Composite. Lee ZY, Hawari HFB, Djaswadi GWB, Kamarudin K. Materials (Basel); 2021 Jan 22; 14(3):. PubMed ID: 33498992 [Abstract] [Full Text] [Related]
8. Comparative Study on the Preparation and Gas Sensing Properties of Reduced Graphene Oxide/SnO2 Binary Nanocomposite for Detection of Acetone in Exhaled Breath. Kalidoss R, Umapathy S, Anandan R, Ganesh V, Sivalingam Y. Anal Chem; 2019 Apr 16; 91(8):5116-5124. PubMed ID: 30869871 [Abstract] [Full Text] [Related]
9. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. Zhang D, Sun Y, Li P, Zhang Y. ACS Appl Mater Interfaces; 2016 Jun 08; 8(22):14142-9. PubMed ID: 27192399 [Abstract] [Full Text] [Related]
10. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film. Jiang C, Zhang D, Yin N, Yao Y, Shaymurat T, Zhou X. Nanomaterials (Basel); 2017 Sep 18; 7(9):. PubMed ID: 28927021 [Abstract] [Full Text] [Related]
11. Facile synthesis of a SnO2@rGO nanohybrid and optimization of its methane-sensing parameters. Navazani S, Shokuhfar A, Hassanisadi M, Askarieh M, Di Carlo A, Agresti A. Talanta; 2018 May 01; 181():422-430. PubMed ID: 29426535 [Abstract] [Full Text] [Related]
12. Boosting room-temperature ppb-level NO2 sensing over reduced graphene oxide by co-decoration of α-Fe2O3 and SnO2 nanocrystals. Zhang Y, Yang Z, Zhao L, Fei T, Liu S, Zhang T. J Colloid Interface Sci; 2022 Apr 15; 612():689-700. PubMed ID: 35030345 [Abstract] [Full Text] [Related]
13. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Li L, He S, Liu M, Zhang C, Chen W. Anal Chem; 2015 Feb 03; 87(3):1638-45. PubMed ID: 25556377 [Abstract] [Full Text] [Related]
14. Reduced Graphene Oxide/Au Nanocomposite for NO₂ Sensing at Low Operating Temperature. Zhang H, Li Q, Huang J, Du Y, Ruan SC. Sensors (Basel); 2016 Jul 22; 16(7):. PubMed ID: 27455275 [Abstract] [Full Text] [Related]
15. Sn powder as reducing agents and SnO2 precursors for the synthesis of SnO2-reduced graphene oxide hybrid nanoparticles. Chen M, Zhang C, Li L, Liu Y, Li X, Xu X, Xia F, Wang W, Gao J. ACS Appl Mater Interfaces; 2013 Dec 26; 5(24):13333-9. PubMed ID: 24313788 [Abstract] [Full Text] [Related]
16. Graphene Oxide@3D Hierarchical SnO2 Nanofiber/Nanosheets Nanocomposites for Highly Sensitive and Low-Temperature Formaldehyde Detection. Wan K, Yang J, Wang D, Wang X. Molecules; 2019 Dec 20; 25(1):. PubMed ID: 31861906 [Abstract] [Full Text] [Related]
17. Fe-Doped ZnO/Reduced Graphene Oxide Nanocomposite with Synergic Enhanced Gas Sensing Performance for the Effective Detection of Formaldehyde. Guo W, Zhao B, Zhou Q, He Y, Wang Z, Radacsi N. ACS Omega; 2019 Jun 30; 4(6):10252-10262. PubMed ID: 31460117 [Abstract] [Full Text] [Related]
19. Investigation of Microstructure Effect on NO2 Sensors Based on SnO2 Nanoparticles/Reduced Graphene Oxide Hybrids. Wang Z, Han T, Fei T, Liu S, Zhang T. ACS Appl Mater Interfaces; 2018 Dec 05; 10(48):41773-41783. PubMed ID: 30419750 [Abstract] [Full Text] [Related]
20. Normal-pressure microwave rapid synthesis of hierarchical SnO₂@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials. Yin L, Chen D, Cui X, Ge L, Yang J, Yu L, Zhang B, Zhang R, Shao G. Nanoscale; 2014 Nov 21; 6(22):13690-700. PubMed ID: 25277111 [Abstract] [Full Text] [Related] Page: [Next] [New Search]