These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


692 related items for PubMed ID: 31382620

  • 1. The Molecular Basis for Remyelination Failure in Multiple Sclerosis.
    Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D.
    Cells; 2019 Aug 03; 8(8):. PubMed ID: 31382620
    [Abstract] [Full Text] [Related]

  • 2. GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.
    Qin J, Sikkema AH, van der Bij K, de Jonge JC, Klappe K, Nies V, Jonker JW, Kok JW, Hoekstra D, Baron W.
    J Neurosci; 2017 Oct 11; 37(41):9925-9938. PubMed ID: 28899916
    [Abstract] [Full Text] [Related]

  • 3. Cells of the oligodendroglial lineage, myelination, and remyelination.
    Miron VE, Kuhlmann T, Antel JP.
    Biochim Biophys Acta; 2011 Feb 11; 1812(2):184-93. PubMed ID: 20887785
    [Abstract] [Full Text] [Related]

  • 4. Oligodendroglial lineage cells express nuclear p57kip2 in multiple sclerosis lesions.
    Pfeifenbring S, Metz I, Kremer D, Küry P, Hartung HP, Brück W.
    Glia; 2013 Aug 11; 61(8):1250-60. PubMed ID: 23828667
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Novel remyelination strategy for multiple sclerosis in the era of oligodendrocytopathy].
    Nakahara J.
    Rinsho Shinkeigaku; 2012 Aug 11; 52(11):1351-3. PubMed ID: 23196615
    [Abstract] [Full Text] [Related]

  • 7. The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment.
    Wootla B, Watzlawik JO, Denic A, Rodriguez M.
    Expert Rev Clin Immunol; 2013 Jun 11; 9(6):535-49. PubMed ID: 23730884
    [Abstract] [Full Text] [Related]

  • 8. Lesion stage-dependent causes for impaired remyelination in MS.
    Heß K, Starost L, Kieran NW, Thomas C, Vincenten MCJ, Antel J, Martino G, Huitinga I, Healy L, Kuhlmann T.
    Acta Neuropathol; 2020 Sep 11; 140(3):359-375. PubMed ID: 32710244
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The complex world of oligodendroglial differentiation inhibitors.
    Kremer D, Aktas O, Hartung HP, Küry P.
    Ann Neurol; 2011 Apr 11; 69(4):602-18. PubMed ID: 21520230
    [Abstract] [Full Text] [Related]

  • 11. Multiple Sclerosis and Aging: The Dynamics of Demyelination and Remyelination.
    Correale J, Ysrraelit MC.
    ASN Neuro; 2022 Apr 11; 14():17590914221118502. PubMed ID: 35938615
    [Abstract] [Full Text] [Related]

  • 12. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure.
    Lombardi M, Parolisi R, Scaroni F, Bonfanti E, Gualerzi A, Gabrielli M, Kerlero de Rosbo N, Uccelli A, Giussani P, Viani P, Garlanda C, Abbracchio MP, Chaabane L, Buffo A, Fumagalli M, Verderio C.
    Acta Neuropathol; 2019 Dec 11; 138(6):987-1012. PubMed ID: 31363836
    [Abstract] [Full Text] [Related]

  • 13. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis.
    Dulamea AO.
    Adv Exp Med Biol; 2017 Dec 11; 958():91-127. PubMed ID: 28093710
    [Abstract] [Full Text] [Related]

  • 14. Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination.
    McLane LE, Bourne JN, Evangelou AV, Khandker L, Macklin WB, Wood TL.
    J Neurosci; 2017 Aug 02; 37(31):7534-7546. PubMed ID: 28694334
    [Abstract] [Full Text] [Related]

  • 15. Schwann cell remyelination of the central nervous system: why does it happen and what are the benefits?
    Chen CZ, Neumann B, Förster S, Franklin RJM.
    Open Biol; 2021 Jan 02; 11(1):200352. PubMed ID: 33497588
    [Abstract] [Full Text] [Related]

  • 16. Factors that retard remyelination in multiple sclerosis with a focus on TIP30: a novel therapeutic target.
    Nakahara J, Aiso S, Suzuki N.
    Expert Opin Ther Targets; 2009 Dec 02; 13(12):1375-86. PubMed ID: 19839715
    [Abstract] [Full Text] [Related]

  • 17. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis.
    Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W.
    Mol Neurobiol; 2018 Apr 02; 55(4):3152-3171. PubMed ID: 28466274
    [Abstract] [Full Text] [Related]

  • 18. Overcoming remyelination failure in multiple sclerosis and other myelin disorders.
    Fancy SP, Kotter MR, Harrington EP, Huang JK, Zhao C, Rowitch DH, Franklin RJ.
    Exp Neurol; 2010 Sep 02; 225(1):18-23. PubMed ID: 20044992
    [Abstract] [Full Text] [Related]

  • 19. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination.
    Galloway DA, Gowing E, Setayeshgar S, Kothary R.
    Glia; 2020 May 02; 68(5):859-877. PubMed ID: 31441132
    [Abstract] [Full Text] [Related]

  • 20. Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination.
    Syed YA, Zhao C, Mahad D, Möbius W, Altmann F, Foss F, González GA, Sentürk A, Acker-Palmer A, Lubec G, Lilley K, Franklin RJM, Nave KA, Kotter MRN.
    Acta Neuropathol; 2016 Feb 02; 131(2):281-298. PubMed ID: 26687980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.